

Roche Pharma Day 2021

14 September 2021

Roche Pharma Day 2021

Welcome

Karl Mahler Head of Investor Relations

Agenda

١	٨	P	lc	n	m	ρ
1	, W			٠J		

Karl Mahler, Head of Investor Relations

Pharma Strategy: Sustainable growth by delivering more patient benefits at reduced cost to society

Bill Anderson, CEO Roche Pharmaceuticals

Commercial Opportunities: Up-date on ongoing and up-coming launches

Teresa Graham, Head Pharma Global Product Strategy (GPS)

Short break

Late Stage Pipeline Oncology & Non-malignant Hematology

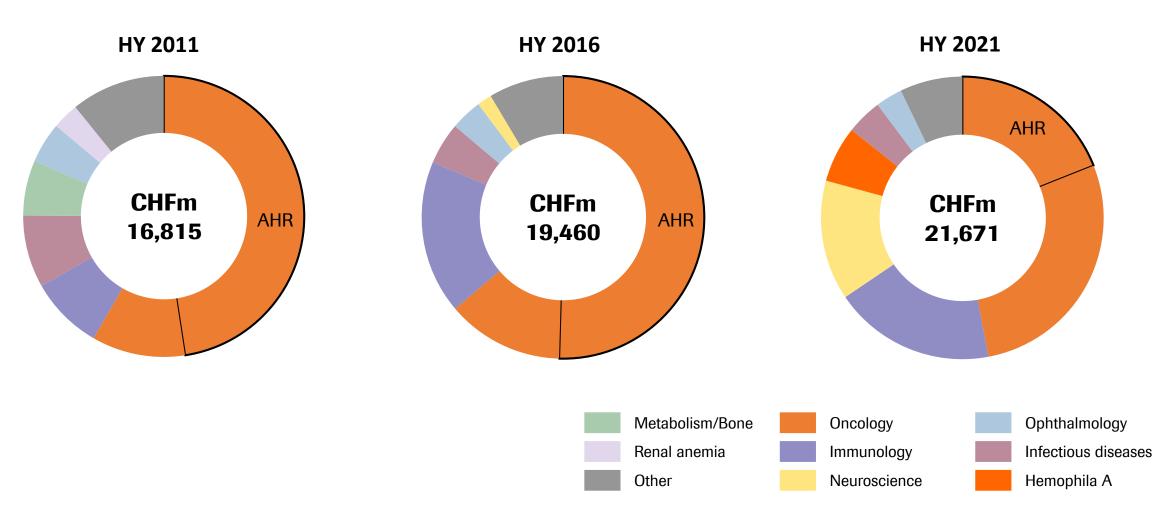
Levi Garraway, Chief Medical Officer and Head Global Product Development

Late Stage Pipeline Neuroscience

Global Head Neuroscience, Immunology, Ophthalmology, Infectious and Rare Diseases, Clinical Development

Late Stage Pipeline Ophthalmology

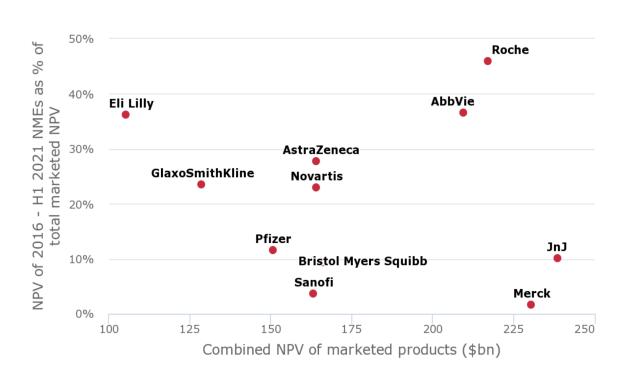
Nilesh Metha, Lifecycle Leader faricimab, GPS


Infectious Diseases: Influenza & SARS-CoV-2

Barry Clinch, Global Head Infectious Diseases, Clinical Development

Q&A

Strong portfolio rejuvenation and diversification



38 Breakthrough Therapy Designations received since 2013 Innovation driving portfolio value

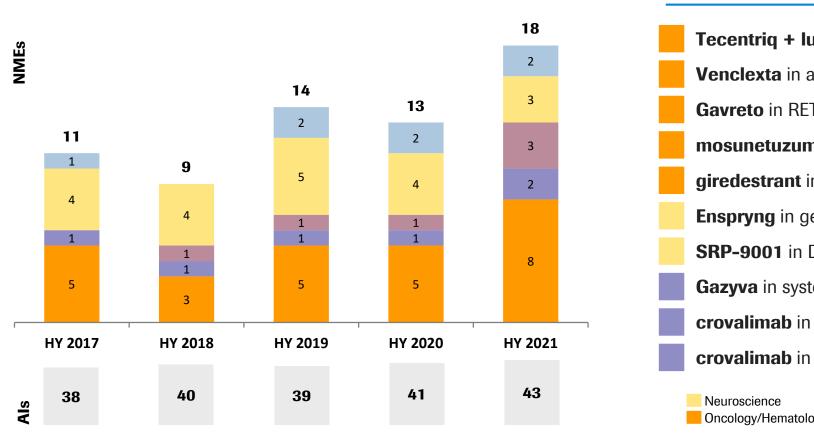
Year	Molecule	Indication
2021	Venclexta + azacitidine	higher-risk MDS
	tiragolumab +Tecentriq	1L PD-L1+ NSCLC
2020	mosunetuzumab	3L+ FL
2020	Tecentriq	unresectable or metastatic ASPS
	Esbriet	uILD
	Gavreto	RET fusion-positive NSCLC
	Gavreto	RET mutation-positive MTC
	Cotellic	Histiocytic neoplasms
2019	Gazyva	Lupus nephritis
	rhPentraxin-2 (PRM-151)	IPF
	Venclexta + Gazyva	1L unfit CLL
	Kadcyla	Adjuvant HER2+ BC
	SPK-8011	Hemophilia A
	Enspryng	NMOSD
2018	Xolair	Food allergies
2010	Tecentriq + Avastin	1L HCC
	Hemlibra	Hemophilia A non-inhibitors
	Rozlytrek	NTRK+ solid tumors
	Polivy + BR	R/R DLBCL
2017	Venclexta + LDAC	1L unfit AML
2017	Zelboraf	BRAF-mutated ECD
	Rituxan	Pemphigus vulgaris

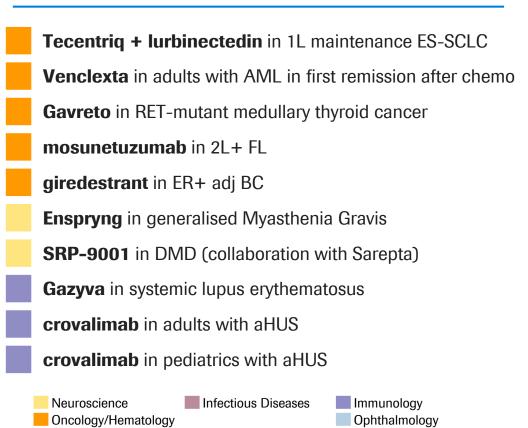
Making a novel contribution (external view)

Source: Evaluate Vantage; July 14, 2021

Roche Pharma Day 2021

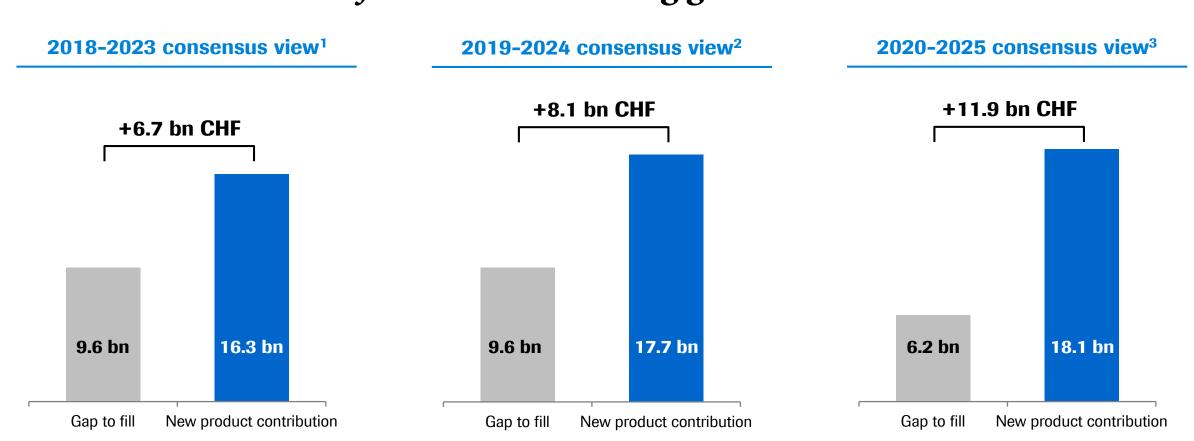
Pharma Strategy: Sustainable growth by delivering more patient benefits at reduced cost to society


Bill Anderson CEO Roche Pharmaceuticals



What has changed since Pharma Day 2020?

Pipeline at all times high: Assets in Ph III & registration Continued momentum in the second half



Outlook H2 2021: 10 new Ph III studies planned

What has changed since our Pharma day a year ago? Further increased confidence in delivering growth

Strong new product contribution and ongoing launches driving growth

¹ Roche Post-HY 2019 consensus survey; ² Roche Post-HY 2020 consensus survey; ³ Roche Post-HY 2021 consensus survey

Transformation is a key enabler of our Pharma Vision Guiding principles & decentralized execution for maximum impact

Decentralised execution

Pharma Development

Pharma Technical

Global Product Strategy

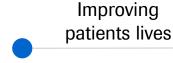
Pharma US

Pharma International

Following common principles

VACC Leadership approach

Pharma
Operating
Principles



VITAL Resource Allocation

Outcomes Based Planning

Resulting in

Serving societal needs

More fulfilling careers

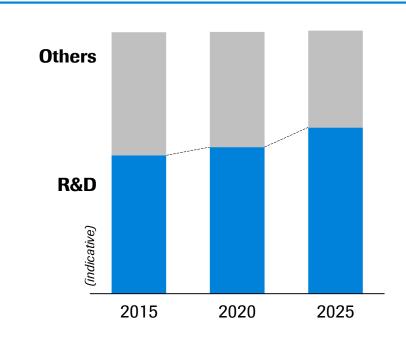
Pharma Vision 2030

Providing more patient benefit at less cost to society

Adjusting to the new environment: HY 2021 vs. HY 2016 Making a greater impact: Increasing financial flexibility

Pharma Technical	Pharma US	Pharma International	Pharma China	Pharma Development
Sales volume growth +68%	Sales growth +23%	Sales growth +18%	Sales growth +117%	NMEs at pivotal stage ¹ +44% Number of projects ² +24%
Direct spend -1% and	OPEX -2% and	OPEX +1% and	OPEX +9% and	PD spend +55% and
Headcount -18%	Headcount -19%	Headcount -15%	Headcount -3%	Headcount +27%

¹ Defined as per First Patient In (FPI) at pivotal stage clinical trial, and does not include NMEs already in registration/filing; ² Late-stage projects


Half-Year 2021: Pharma Division performance

Continued investments into R&D to drive future growth & medical advances

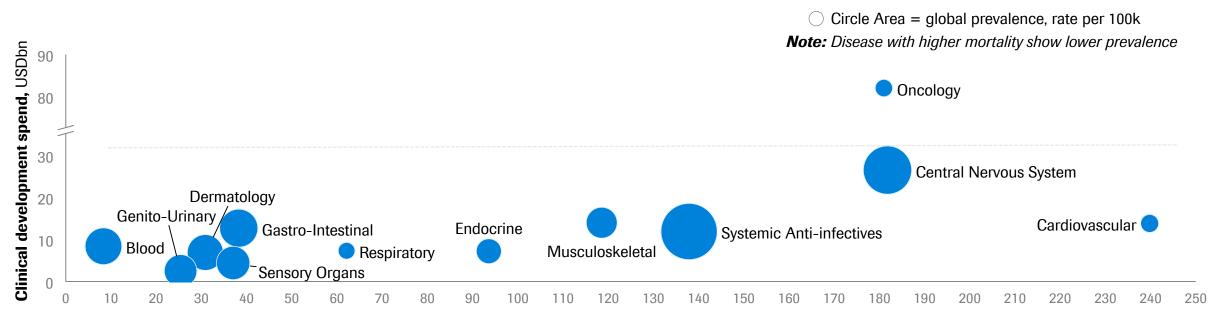
HY 2021 – Pharma Division

	CHFm	CER growth vs PY
Sales	21,671	-3%
R&00I	1,372	+34%
Cost of sales	-3,882	-4%
M&D	-2,962	-6%
R&D	-5,883	+19%
G&A	-754	-2%
Core operating profit	9,562	-8%
Core OP, % of sales	44.1%	

R&D investment allocation (% of **OPEX**)

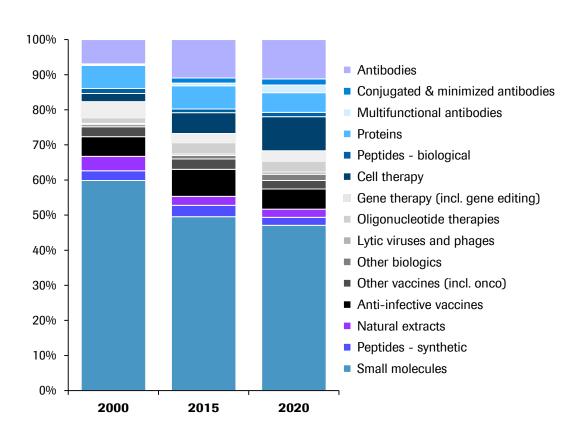
Principles for resource allocation

- Re-allocate resources into R&D while working on and protecting profitability
- All departments of Roche aligned on supporting innovation: transformation ongoing in G&A, M&D,
 Finance, R&D, etc.

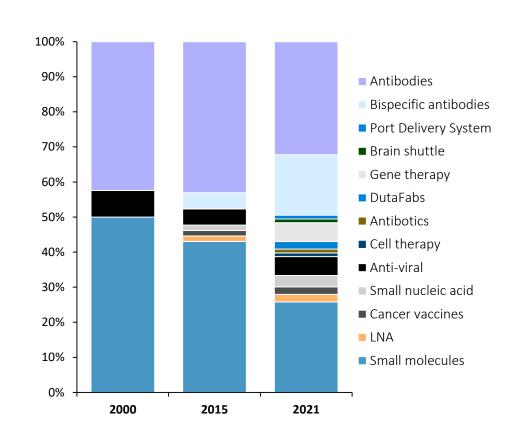


Broad investment in early stage pipeline and new technologies

Total clinical development spend by therapeutic area vs. global disease burden



Minimum unaddressed disease burden, million DALYs1


Roche

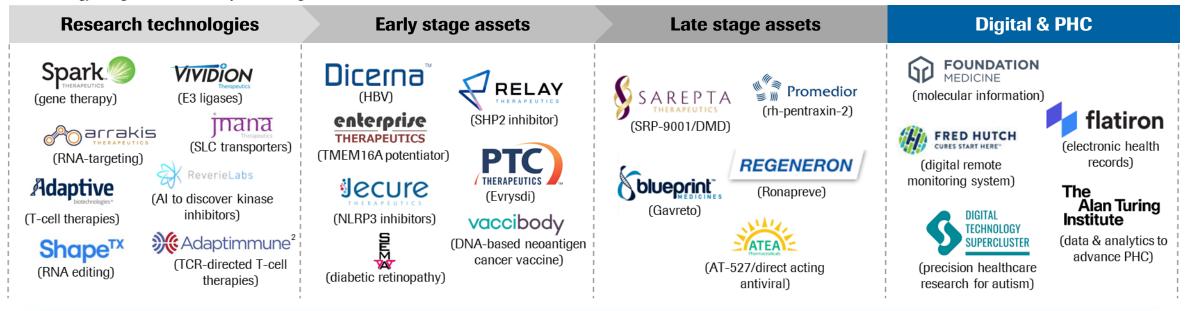
Roche pipeline evolution, increasing leverage of multiple modalities Diversify the portfolio for future growth

Industry: Pipeline by therapeutic modality¹

Roche: Pipeline by therapeutic modality²

¹ Evaluate & Pharmaprojects 2020: Ph1-3 innovative drugs only, excluding reformulations and biosimilars; snapshot as of June each year with missing phases not approximated; development status based on most progressed indication; ² Roche disclosed pipeline half year results 2000, 2015 and 2021

Roche with leading portfolio of multiple modalities


	Small molecules	Large molecules		Nucleic acid bas	sed medicines	Cell therapies	Vaccines
	Small molecules on the second	Antibodies & protein engineering	Protein conjugates	RNA based technologies	Gene therapy	Cell therapies	Vaccines
Modalities	Active site inhibitors; allosteric inhibitors; RNA modulators; protein degraders; macrocycles, etc.	Monoclonal antibodies; antibody fragments; bispecific antibodies; T cell directed antibodies; fusion proteins; targeted cytokines etc.	Antibody conjugates etc.	Antisense oligonucleotides; short interfering RNA; locked nucleic acids etc.	Technologies based on adenovirus vectors	Reprogrammed T cells with neo- antigen specificity	RNA vaccines, DNA vaccines against neo- antigens in oncology
Examples	giredestrant belvarafenib SHP2i KRAS G12C	glofitamab, mosunetu faricimab, DutaFabs, PD1xTIM3, PD1xL gantenerumab brai	MAGE-A4 ImmTAC AG3, cevostamab,	Factor B ASO, HBV siRNA, UBE3A LNA	SPK-8011 SRP-9001	NEO-T cells	autogene cevumeran
Strategy	Target currently "undruggable" targets; modify RNA splicing	Innovative protein en multi-specificity and ta mechanism	rgeting and allow new	Switching off a disease causing gene on the RNA level	Introducing back the wild-type gene to compensate for a disease causing gene mutation	Introduction of modified cells to induce a potent immune response or a regenerative effect	Using RNA or DNA based vaccines to induce a potent anti- tumor immune response

Roche

Recent deals and partnerships¹

Accelerate drug discovery and driving personalized healthcare

Technology stage at the time of licensing

92 new agreements in 2020 focused on

High disease burden / Promising targets / Novel enabling techologies / Decision support

¹ Non-exhaustive and illustrative overview of deals and partnerships signed over recent years; ² subject to regulatory clearance

Diversifying and deepening our portfolio

Strong commercial potential throughout late stage portfolio

+24 late-stage assets with large sales potential

Xofluza

Evrysdi

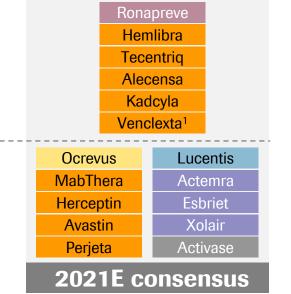
Enspryng

Phesgo

Polivy

Gavreto

Neuroscience


Oncology/Hematology

Immunology

Infectious diseases

PDS w/ ranibizumab AT-527 faricimab prasinezumab crovalimab fenebrutinib SRP-9001 giredestrant inavolisib anti-tau mAbs tiragolumab gantenerumab glofitamab etrolizumab mosunetuzumab Gazyva rhPentraxin-2 ipatasertib

16 blockbusters

¹ Venclexta sales are booked by partner AbbVie; mAb=monoclonal antibody; Note: based on Post HY 2021 consensus

10 blockbusters

2018

Lucentis

Actemra

Esbriet

Activase

Ocrevus

MabThera

Herceptin

Avastin

Perjeta

Ophthalmology

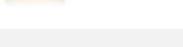
launched

Broadening and deepening the ophthalmology portfolio Core focus area for Roche

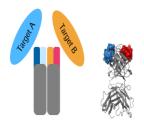
Faricimab

PDS with ranibizumab

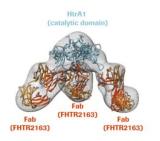
PDS with DutaFabs


Anti-VEGF/Ang2 bispecific mAb

Positive readouts across DMF &


nAMD, trials in RVO in US/EU

Expected US/EU launch in 2022

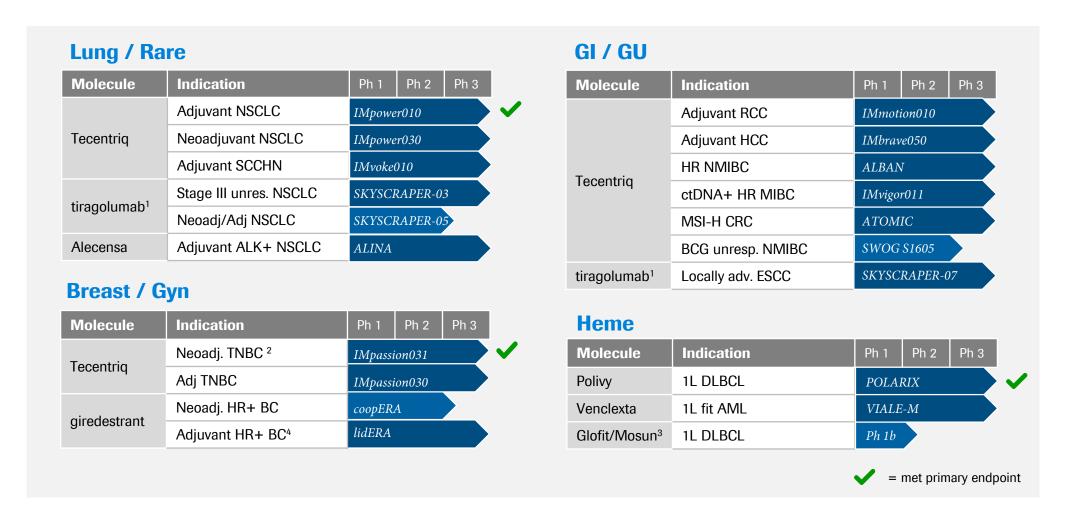


- First Roche intravitreal implant
- Positive readout in nAMD¹, DME and DR in 2022, Q9M extension initiated
- Potential approval in 2021 (US)

- DutaMab technology enables creation of a novel bispecific Fab²
- Significantly smaller than bispecific antibodies
- · Compatible with PDS

Geographic Atrophy

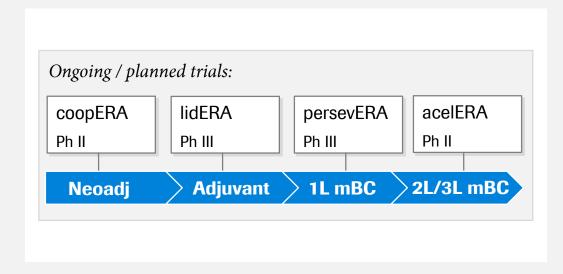
- Chronic progressive degeneration of the macula
- Leading to central scotomas and permanent loss of visual acuity
- Early collaborations ongoing


Improved patient outcome and reduced treatment burden

Committed to advancing the understanding of CNS diseases Leveraging digital approaches to improve research & disease management

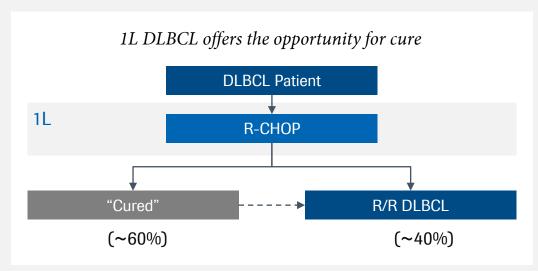
	Smarter, more efficient R&D	Patient care & access	
NeuroImmunology	MULTIPLE SCLEROSIS Internal decision endpoints Digital, MRI, PET, EEG, Genomics	MULTIPLE SCLEROSIS Patient care tools Floodlight app	
NeuroMuscular diseases	DUCHENNE MUSCULAR DYSTROPHY Regulator enabling endpoints	SPINAL MUSCULAR ATROPHY Patient care tools Digital measure bulbar & motor function	
NeuroDevelopment & psychiatry	ANGELMAN SYNDROME Prognostic & diagnostic tools EEG, Gen Internal decision endpoints Digital, EEG, MRI, CSF, Genomics	ANGELMAN SYNDROME Patient care tools, diagnostic tool Digital, Genomics	
NeuroDegenerative diseases	PARKINSON'S DISEASE Internal decision endpoints Digital; imaging and fluid BMs, Genomics	ALZHEIMER'S DISEASE Patient care tools Digital, imaging and fluid BMs. Smart device and clinical decision support tools in consideration	
	Digital toolsImaging tools	Wet biomarkersGenomics	

Investing in early disease in Oncology Presenting the opportunity for cure



¹ with Tecentriq; ² Positive for PCR; ³ +/- Polivy; ⁴ Planned trial; NSCLC=non-small cell lung cancer; SCCHN=squamous cell carcinoma head & neck; TNBC=triple negative breast cancer; RCC=renal cell carcinoma; HCC=hepatocellular carcinoma; NMIBC=non-muscle invasive bladder cancer; CRC=colorectal carcinoma; ESCC=esophageal squamous cell carcinoma; DLBCL=diffuse large b-cell lymphoma; AML=acute myeloid leukemia

Examples of addressing high unmet need in earlier lines

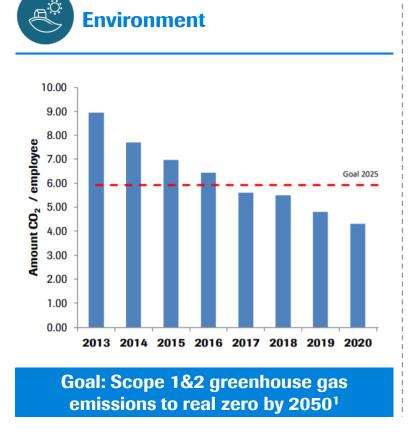


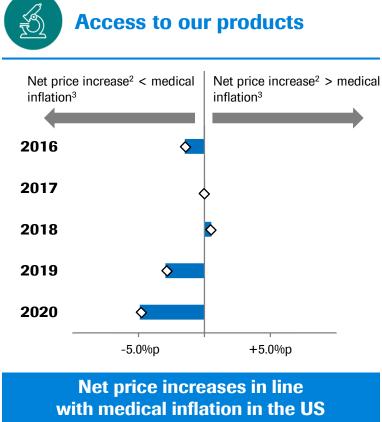
Giredestrant in HR+ BC: Potential best in class profile

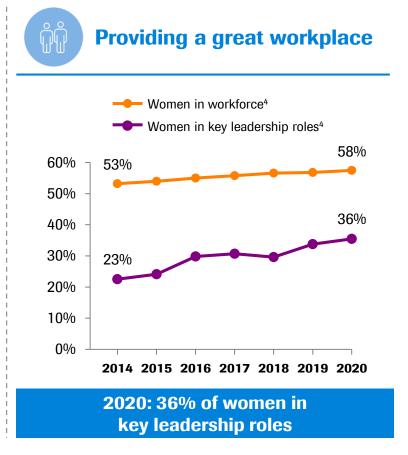
- Differentiated MOA: immobilizes ER in the nucleus prior to degradation
- High potency: 7-15x more potent than other SERDs
- Well tolerated: alone and in combination with CDK4/6i
- Standardized dose: once-daily selected for monotherapy/combo

Polivy in DLBCL: Addressing high unmet need in 1L

- Cure: ~40% of patients not cured with R-CHOP in 1L setting
- Patients with R/R DLBCL have poor prognosis: mOS <2yrs
- No new 1L therapies approved since R-CHOP




Making a sustainable impact


Our impact on society

Ranked most sustainable healthcare company by DJSI for the 11th time

¹ Without buying CO2 certificates; ² Genentech's annual average net price increase in the U.S., weighted by sales; ³ for inflation CPI-U Medical Care is used for all medical care expenditures (incl. prescription and non-prescription drugs, medical supplies, physicians' services, hospital services, and health insurance) – source: U.S. Bureau of Labor Statistics (US BLS); ⁴ for Roche Pharma

What can you expect from us?

Our replace and extend strategy is progressing well

Replace ongoing franchises

MabThera/Rituxan

Gazyva, Venclexta, Polivy, mosunetuzumab, glofitamab

Herceptin Perjeta,
Kadcyla,
Phesgo

Avastin

Tecentriq,
Alecensa,
Rozlytrek,
tiragolumab

Lucentis Port delivery system (PDS)

Tamiflu Xofluza

Esbriet rhPentraxin-2

Entering new franchises

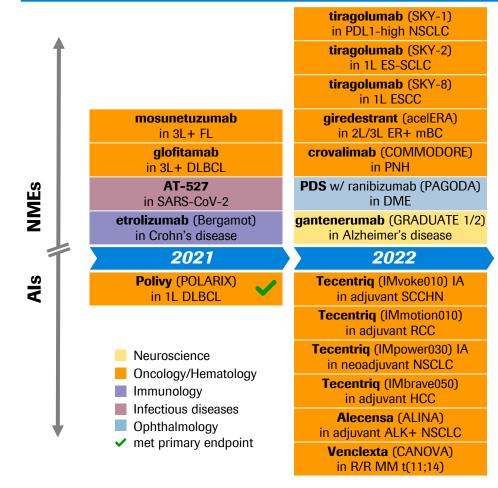
Oncology:

Tecentriq (mUC, SCLC, HCC, mM), ipatasertib (mCRPC), giredestrant (HR+ BC)

Non-malignant hem: Hemlibra, SPK-8011, crovalimab (PNH, aHUS)

Neuroscience:

Ocrevus (RMS, PPMS), fenebrutinib (RMS, PPMS) Enspryng (NMOSD, gMG), Evrysdi (SMA), gantenerumab (AD), SRP-9001 (DMD)

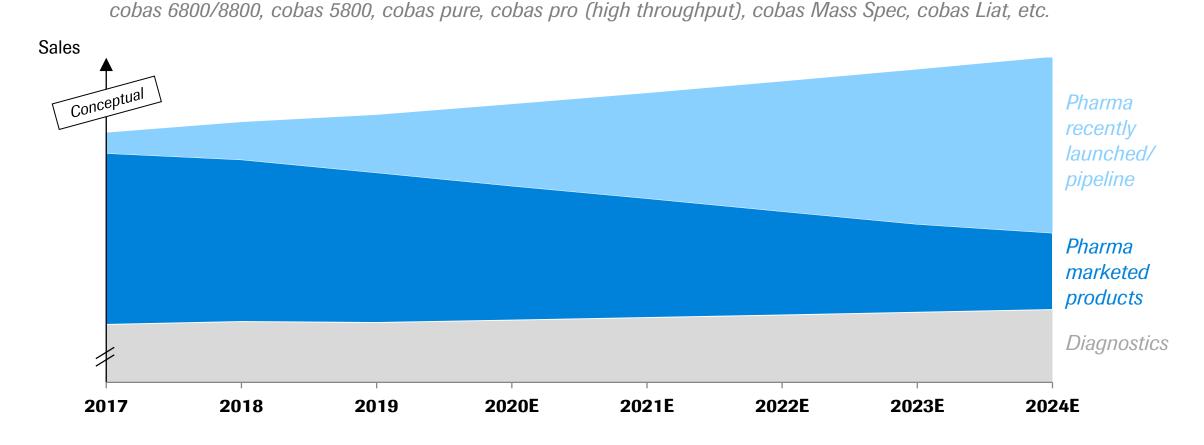

Infectious diseases:

Ronapreve (COVID-19), AT-527 (COVID-19)

Immunology:

etrolizumab (CD), Gazyva (LN, MN, SLE)

Strong news flow ahead (data readout)



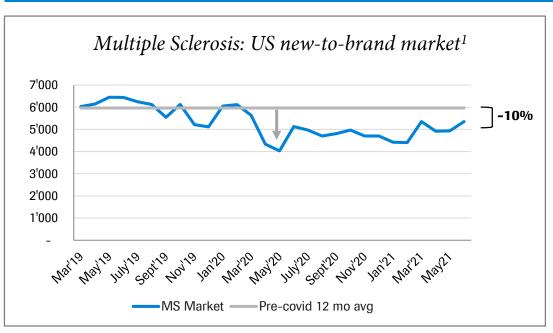
mUC=metastatic urothelial carcinoma; SCLC=small cell lung cancer; HCC=hepatocellular carcinoma; mM=metastatic melanoma; mCRPC=metastatic castration resistant prostate cancer; BC=breast cancer; PNH=paroxysmal nocturnal hemoglobinuria; aHUS=atypical hemolytic uremic syndrome; RMS=relapsing multiple sclerosis; PPMS=primary progressive MS; NMOSD=neuromyelitis optica spectrum disorder; SMA=spinal muscular atrophy; AD=Alzheimer's disease; DMD=duchenne muscular dystrophy; CD=Crohn's disease; SLE=systemic lupus erythematosus; FL=follicular lymphoma; DLBCL= diffuse large B cell lymphoma; NSCLC=non-small cell lung cancer; ESCC=esophageal squamous cell carcinoma; DME=diabetic macular edema; IA=interim analysis; SCCHN=squamous cell carcinoma of the head and neck; RCC=renal cell carcinoma;

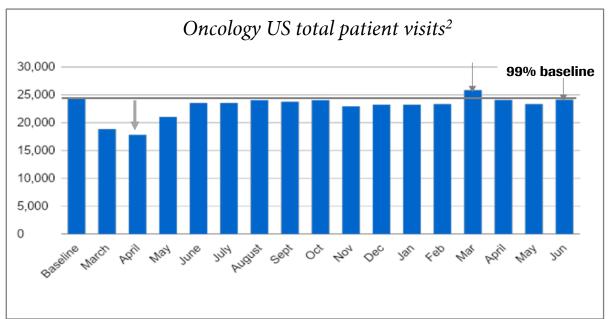
Pharma NME and Dia launches Ocrevus, Perjeta, Hemlibra, Tecentriq, Venclexta, Gazyva, Alecensa, Xofluza, Polivy, Rozlytrek, Evrysdi, Enspryng, PHESGO, Gavreto, PDS, faricimab, etrolizumab, tiragolumab, gantenerumab, giredestrant, etc.



Roche Late Stage Pipeline Event 2021

Near-term growth drivers


Teresa Graham | Head of Global Product Strategy



COVID-19 impact: normalization of healthcare systems ongoing *Pandemic continues to impact business dynamics*

Some normalization, but not yet back to pre COVID-19 levels in certain indications and geographies

¹ Source: IQVIA Apr Claims, IQVIA NSP (2-month rolling average); ² Source: IQVIA U.S. Pharmaceutical Market Trend Report 2021

Significant short term news flow driving near term growth

2021 pivotal trial readouts

Molecule	Trial	Indication	Pts (US/EU5)
Tecentriq	IMpower010	Adjuvant NSCLC	~101K ¹
Polivy	POLARIX	1L DLBCL	~52K
mosunetuzumab	Ph lb GO29781	3L+ FL	~4k
glofitamab	Ph lb NP30179	3L+ DLBCL	~9K
Hemlibra	HAVEN6	Mild/Moderate PwHA	~15k
faricimab	TENAYA/LUCERNE	nAMD	~4,250K
etrolizumab	BERGAMOT	Crohn's Disease	~580k ²
Evrysdi	JEWELFISH	SMA type 1/2/3 (switch)	~16K ³
Ronapreve	Study 2067	COVID-19 outpatient	
Ronapreve	Study 2069	COVID-19 prophylaxis	N/A
AT-527		COVID-19	

Oncology/Hematology	Ophthalmology Immunology
Infectious diseases	Neuroscience

2022 pivotal trial readouts

Molecule	Trial	Indication	Pts (US/EU5)
Tecentriq	IMvoke010	Adjuvant SCCHN	~40K ⁴
Tecentriq	IMmotion010	Adjuvant RCC	~34K
Tecentriq	IMpower030	Neoadjuvant NSCLC	~10K ⁵
Tecentriq	IMbrave050	Adjuvant HCC	~2K ⁶
tiragolumab	SKYSCRAPER-01	1L PD-L1 high NSCLC	~44K
tiragolumab	SKYSCRAPER-02	1L SCLC	~40K
tiragolumab	SKYSCRAPER-08	1L ESCC	~16K
giredestrant	acelERA	2L/3L HR+ BC	~83K
Alecensa	ALINA	Adjuvant ALK+ NSCLC	~5k ⁷
Venclexta	CANOVA	R/R MM t(11;14)	~9k
crovalimab	COMMODORE II/III	PNH	~4k
PDS	PAGODA	DME	~6,085k
gantenerumab	GRADUATE I/II	Alzheimer's Disease	~11,564k ⁸

Commercial opportunities

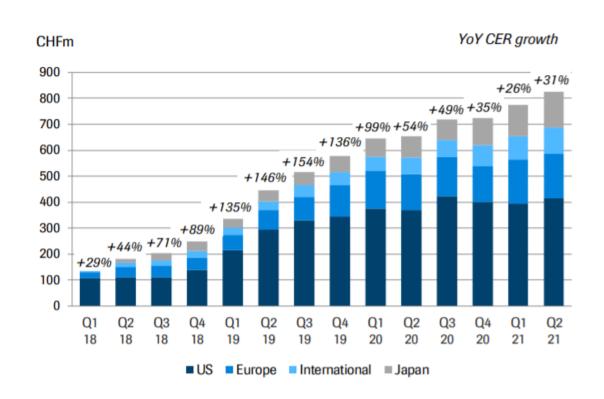
1. Oncology / Hematology

- Tecentriq
- Tiragolumab
- HER2-franchise (Kadcyla, Perjeta/Phesgo)
- Giredestrant
- Polivy
- CD20xCD3 bispecifics (mosunetuzumab, glofitamab)
- Hemlibra

2. Ophthalmology / Immunology / Infectious Disease

- Faricimab
- Port Delivery System

3. Neuroscience / Rare Disease


- Ocrevus
- Evrysdi
- Gantenerumab

Annualized sales >3b CHF with significant near term catalysts

Neoadjuvant / adjuvant

- Positive data in adjuvant NSCLC (IMpower010)
- Ph 3 readouts for Adj SCCHN, Adj RCC, Neoadj NSCLC, and Adj HCC all in 2022

CIT combinations

 Tecentriq + Tiragolumab has the potential to reset the standard of care in markets where PD-1/PD-L1 already established

Tecentriq: adjuvant NSCLC

Roche

Filed with FDA under RTOR (Priority Review)

High unmet need in early NSCLC | 5-year OS by disease stage | 100% |

 Many patients with Stage I-III NSCLC continue to have disease recurrence/progression postsurgery

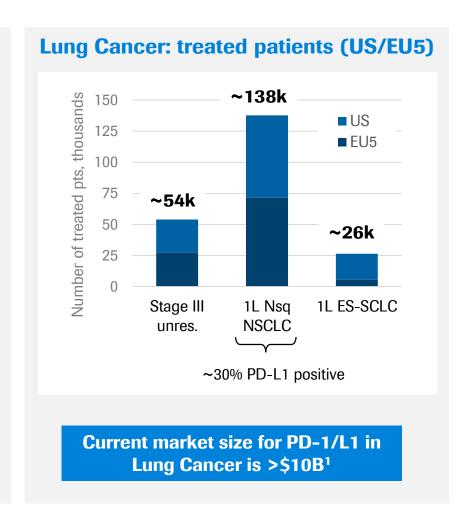
Adjuvant NSCLC treatment is still evolving

Screening: Early detection technologies expected to increase diagnosis at early stage

Testing: Increasing with adjuvant development for EGFR+, PD-L1+, ALK+ patients

Systemic therapy: Adjuvant treatment rates expected to increase with new therapeutic options

¹ Chansky, et al Journal of Thoracic Oncology (2017); NSCLC=non-small cell lung cancer; RTOR=real time oncology review

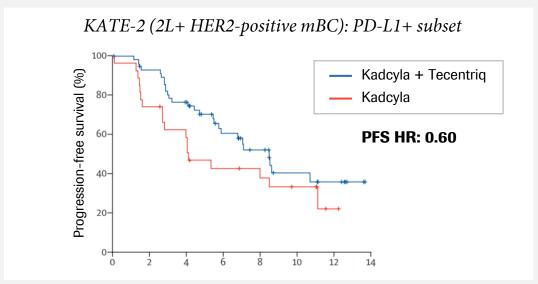


Nine Ph II/III trials initiated, with four readouts in 2022

	Indication	Ph 1
	1L NSCLC: PD-L1 high	SKYSCRAPER-01 2022
	1L ES-SCLC	SKYSCRAPER-02 2022
Lung Cancer	Stage III unres. NSCLC	SKYSCRAPER-03
	Neoadj / Adj NSCLC	SKYSCRAPER-05
	1L NSq NSCLC	SKYSCRAPER-06
	Locally advanced ESCC	SKYSCRAPER-07
	1L ESCC	SKYSCRAPER-08 2022
Additional solid tumors	2L+ PD-L1+ Cervical Cancer	SKYSCRAPER-04 2022
	1L SCCHN	SKYSCRAPER-09

- Build on Tecentriq: Improve on Tecentriq benefit in SCLC
- Expand into early disease: Trials initiated in ESCC and early NSCLC
- Compete in new indications: H2H trials in NSCLC vs. durva (St III), pembro + chemo (1L)

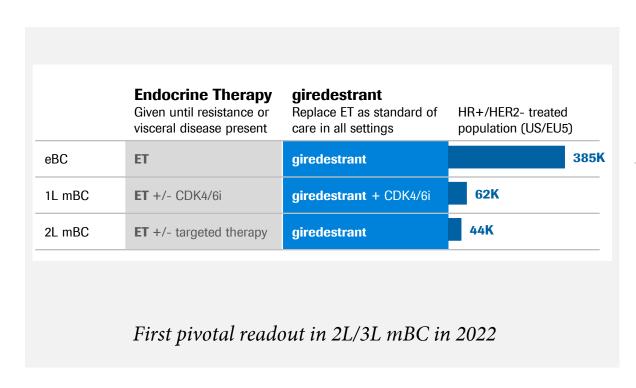
HER2 Franchise



Continuing to innovate for patients with HER2+ BC

Near term growth driven by eBC, Phesgo uptake 2L mBC 19K 19K 1L mBC PERJETA' PHESGO* Adjuvant Neoadj PERJETA' PHESGO* Neoadj PERJETA' PHESGO*

- High bar established in eBC in terms of safety and efficacy (long-term iDFS data)
- >50% of Kadcyla sales in adjuvant setting
- Phesgo: seeing strong early uptake in US, in particular in academic institutions; strong conversion UK with reimbursement in other key markets ongoing



- Combinations with Tecentriq initiated in PD-L1+/HER2+ BC
 - ASTEFANIA [Kadcyla+Tecentriq in high risk adj eBC]
 - NRG-BR004 [H+P+Tecentriq in 1L mBC]
 - KATE-3 [Kadcyla+Tecentriq in 2L+ mBC]

Giredestrant (SERD)

Large addressable population, with best-in-class potential

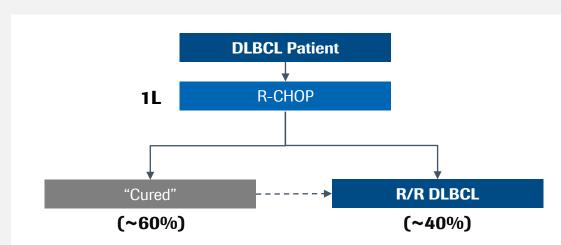
High unmet need remains in HR+/HER2-BC

- Up to 50% of eBC pts stop treatment early due to tolerability¹
- 30% of patients develop metastatic disease²
- Need for new therapies to overcome resistance

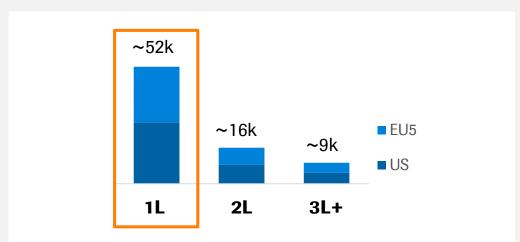
Potential for best-in-class SERD

- <u>Differentiated MOA</u>: immobilizes ER in the nucleus prior to degradation
- <u>High potency</u>: 7-15x more potent than other SERDs in development
- Well tolerated alone and in combination with CDK4/6i
- <u>Standardized dose</u>, 30mg once-daily selected for monotherapy/combo
- Broadest clinical program: only SERD with adjuvant trial vs. SOC

¹ Bowels A, et al *J Oncol Pract* 2012; ² Ruhstaller, T. *J Clin Oncol* 2018; ET=endocrine therapy; HR+ BC=hormone receptor positive breast cancer; eBC=early breast cancer; mBC=metastatic breast cancer; SERD=selective estrogen receptor degrader; SOC=standard of care


Polivy + R-CHP

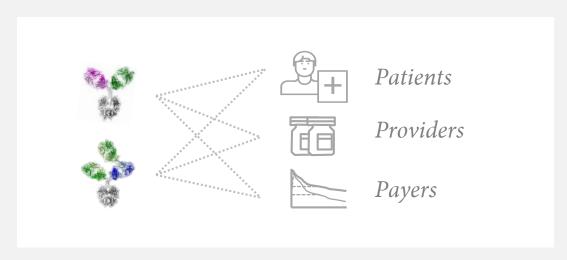
First positive trial in 1L DLBCL in >20 years



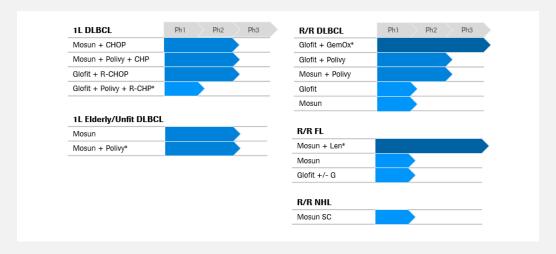
1L DLBCL can be curative, but high unmet need remains

- ~40% of patients are not cured with R-CHOP in 1L
- Patients with R/R DLBCL have poor prognosis: mOS <2yrs

Multibillion CHF market opportunity in 1L DLBCL



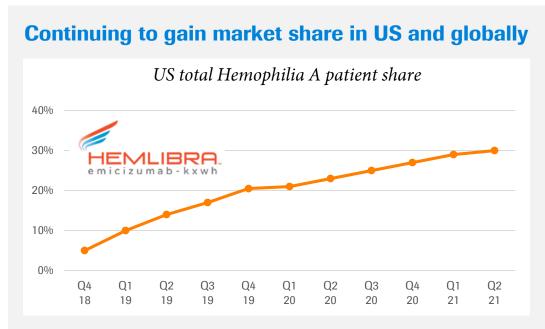
- No new 1L therapies approved since R-CHOP
- · 3x more drug treated patients in 1L than 2L DLBCL
- No competitors expected in 1L DLBCL for >3.5 years


Mosunetuzumab and glofitamab (CD20 x CD3 bispecifics) Potential to be first-in-class and best in class in FL and DLBCL

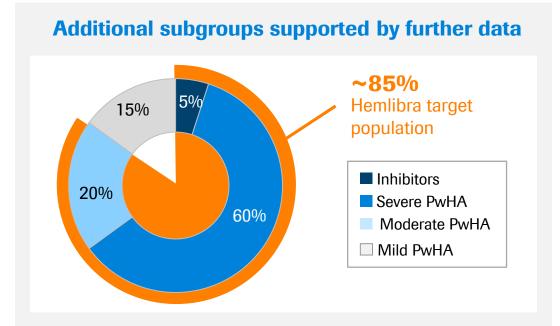
Mosun and Glofit are differentiated and can be tailored to address diverse patient and customer needs

- **Mosun**: attractive profile for the outpatient setting and across a broad range of indications and settings; no required hospitalization
- Glofit: best in class efficacy potential with high CR rates, and manageable CRS

Most advanced clinical development plan with pivotal cohorts reading out in 2021

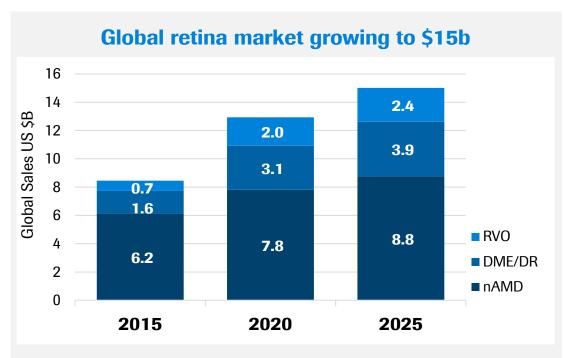


- <u>Late line monotherapy</u>: Mosun pivotal cohort (3L+ FL) filing in 2021, glofit pivotal cohort (3L+ DLBCL) filing in 2022
- R/R NHL combinations: Randomized Ph 3 trials initiated in R/R FL (mosun+len) and 2L+ DLBCL (glofit + GemOx)
- **1L DLBCL:** Moving into 1L DLBCL in combination with Polivy


Hemlibra

Transformational advance for Hemophilia A patients

- 30% total patient in US (all severities), 28% patient share in EU5 (severe patients only)
- Non-inhibitor approval in >90 countries, reimbursement in >30 countries to-date
- · Approved in China in Q2'21



- HAVEN1-4: Five year follow-up (data expected in 2022)
- HAVEN6: Mild-moderate study for EU label; interim data submitted to ASH
- HAVEN7: <1yr; first novel therapy to be studied for prophylaxis in infants (data expected in 2022)

Preparing for first launch of PDS in 2021 and faricimab in 2022*

- Market growth driven by aging population, product innovation
- Potential to further increase market size with increased compliance from less frequent dosing

Faricimab: First new MOA in nAMD/DME >15 yrs. Strong durability, with approximately half of patients able to be maintained on Q16W dosing

Port Delivery System (PDS): Permanent, refillable intraocular implant. Nearly all patients maintained on dosing every 6 months

Global rights secured for faricimab and PDS

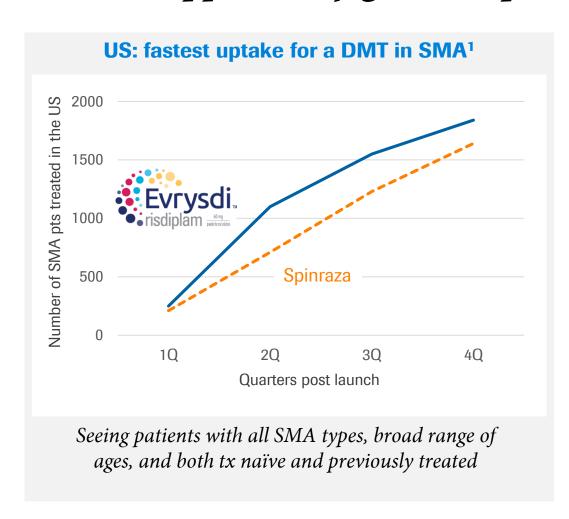
Ocrevus

Ocrevus continues to have a strong growth profile

Best in disease efficacy and safety

- Robust, consistent, and sustained delay in disability progression
- Ocrevus is the only therapy approved in PPMS
- >200K patients treated, with consistent benefit-risk profile
- Higher dose Ocrevus studies look to further improve on best-in-disease profile

Twice yearly dosing drives better compliance


- >90% persistence/adherence after 1 yr; superior to oral & injectable medicines
- Short infusion (2h) further improves convenience
- Ocrevus has been infused in >46K locations in the US (~50% of infusions occur outside of the hospital)

Source: IQVIA; MS=Multiple Sclerosis; PPMS=Primary Progressive

Evrysdi

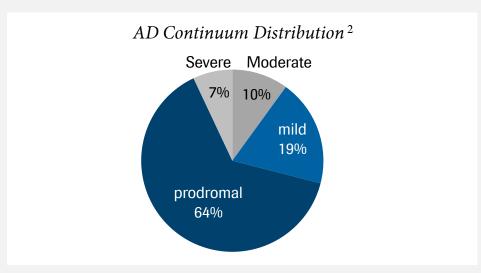
Growth supported by global expansion, and further share gains

Strong global launch with approval now in all major markets

- 20% market share in Germany within 4 months of launch
- Ongoing dialogue with EU reimbursement bodies
- · Japan public reimbursement secured
- Approved in China

Global SMA market expected to grow to >\$5b by 2025²

- Global expansion (significant untreated populations in many countries)
- Treatment of previously untreated Type 2/3 patients (driven by new options like Evrysdi)


¹ Source: company reported data; ² Evaluate Pharma; SMA=spinal muscular atrophy

Gantenerumab

Pivotal data expected 2H'22; most comprehensive data in AD

Large patient population and high unmet need

- 47M patients worldwide and projected to be 76M by 2030¹
- 6th leading cause of death in the US¹
- ~10M new cases / year who may be eligible for therapy²

Confidence in GRADUATE I/II to deliver clear & robust dataset

- Well powered: two parallel studies with ~1,000 participants each
- Extended trial duration: 27 months
- Maximized exposure: optimized titration scheme & single target dose regardless of APOE genotype
- Demonstrated Aβ plaque reduction (80% of patients below amyloid positivity threshold at 3 years in OLE)

First and only subcutaneous treatment for AD

- SC delivery allows flexible care setting incl home-administration by caregiver
- Reduces the burden of IV infusions for AD patients
- Enables broad patient access and reduces health care burden

Roche Pharma Day 2021

Late Stage Pipeline Oncology

Levi Garraway

Chief Medical Officer and Head Global Product Development

Late stage pipeline Oncology

1. Hematology franchise

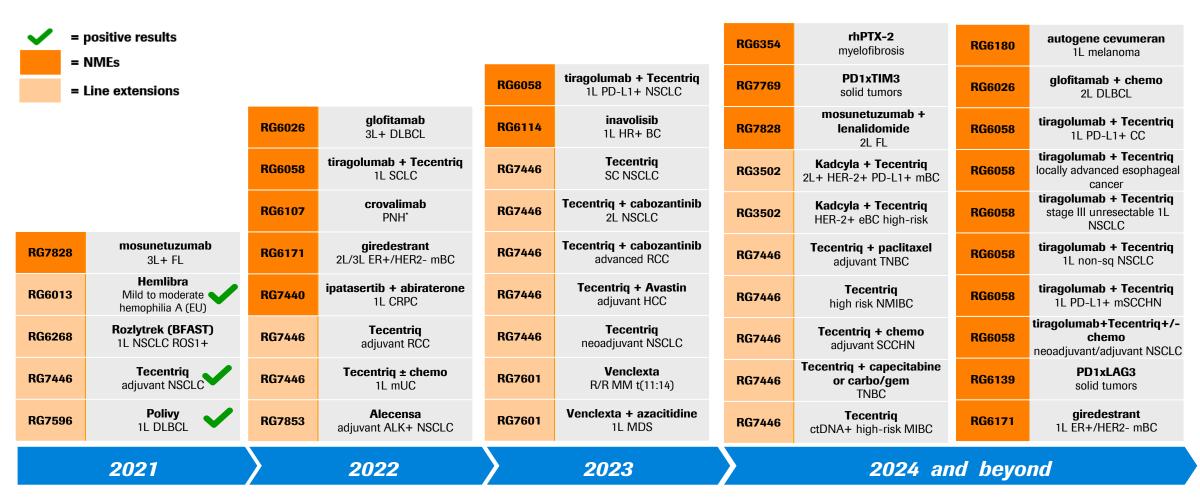
- Polivy in DLBCL
- Mosunetuzumab (CD20xCD3) in NHL
- Glofitamab (CD20xCD3 2:1 format) in NHL
- · Venclexta in CLL, AML, MM, MDS
- · Cevostamab in MM

2. HR+/HEr2- Breast cancer portfolio

- Giredestrant in HR+ BC
- Inavolisib in HR+ BC (PIK3CAm)

3. Other oncology

- Adjuvant program
- Tiragolumab program
- New PD1 bispecifics: PD1-LAG3, PD1-TIM3

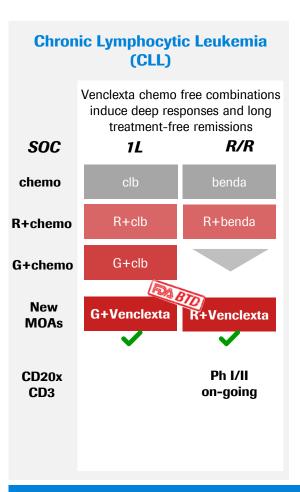

4. Non-malignant hematology

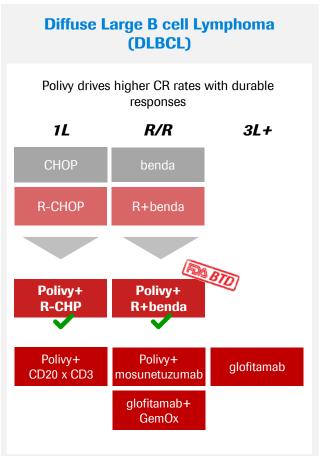
- SPK-8011 Gene Therapy in hemophilia A
- · Crovalimab in PNH, aHUS, CSD

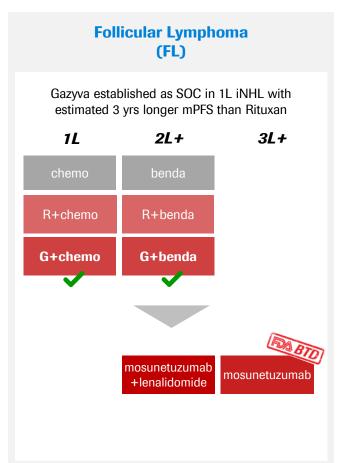
Late stage oncology pipeline (Phase II/III) 6 Oncology NMEs with near-term pivotal data

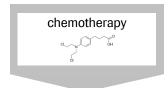
Status of planned submissions as of July 22, 2021; * First filing in China

Broadest set of technology platforms applied in Oncology


Small molecules	Bi-specifics	Fusion protein	mAb	Antibody drug conjugate	Neoantigen vaccines	Personalized T cells	Antisense RNA	Gene therapy
CI ON NOH	2:1 format 1:1 format			***	iNeST platform: mRNA- LPX Liposome	Activated T cell with neoantigen specificity	Trenscription Antisense oligonoutientedido (NSO)	AVV Adeno associated virus
 ipatasertib inavolisib giredestrant KRAS G12C TLR7 agonist belvarafenib 	 mosunetuzumab glofitamab cibisatamab Her2 x CD3 glypican-3 x CD3 cevostamab 	 PD1-IL2v CD19-4-1BBL FAP-4-1BBL MAGE-A4 ImmTAC IL15/IL15Ra-Fc 	tiragolumabCD25 mAbcodrituzumabCD137	• preclinic	autogene cevumeran	programmed T cells	Factor B ASOHBV siRNAPDL1 LNAUBE3A LNA	 SPK-8011 SPK-8016 SPK-3006 SPK-7001 SRP-9001
SHP2i Target oncogenes, induce apoptosis, supress tumor growth	 PD1 x TIM3 PD1 x LAG3 TYRP1-CD3	• FAP-CD40 Amplify immune response	Amplify immune response	Targeted toxic payload	Patient's neo-antigens for anti-tumour immune response	Patient's neo-antigens for anti-tumour immune response	Recombinant proteins	Oncolytic adenovirus
 fenebrutinib ralmitaront GABA Aa5 PAM PTH1R agonist NLRP3 inhibitor Abx MCP 	 faricimab FIXa x FX FGFR1 x KLB VEGF x Ang2 Duta 	 brain shuttle gantenerumab efmarodocokin alfa lgG-IL2 	 crovalimab gantenerumab prasinezumab semorinemab etrolizumab TLR4 mAb 		Oncology	Products	• rh pentraxin-2	• Type 5
ADX MCPCpAMAT-527			HtrA1 mAbanti-tryptase		= pipeline	= approved		adenovirus


^{*} List of pipeline molecules shown below is not complete; Molecules in the orange box are developed in Oncology

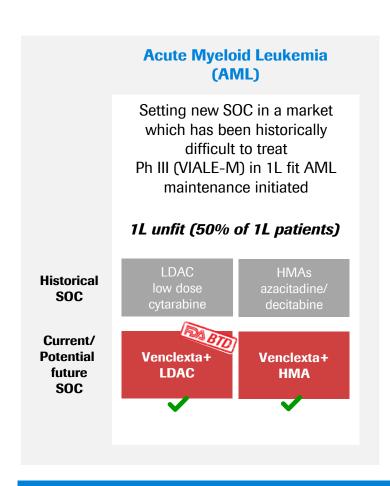

Hematology: Evolving the standard of care in CLL, DLBCL and FL

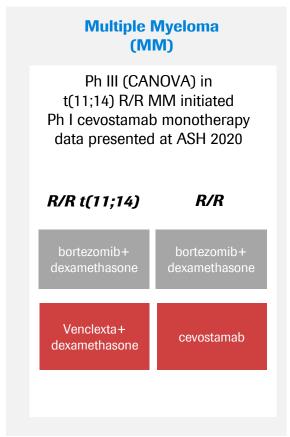


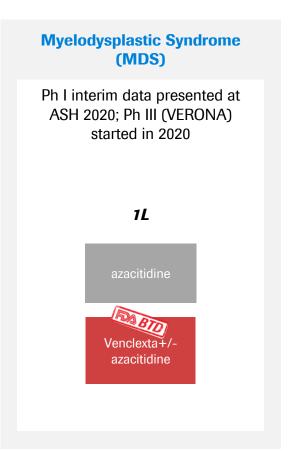
Total CLL, DLBCL, FL market growing to 9bn & 15bn, respectively by 20241

✓ = approved or positive read-out

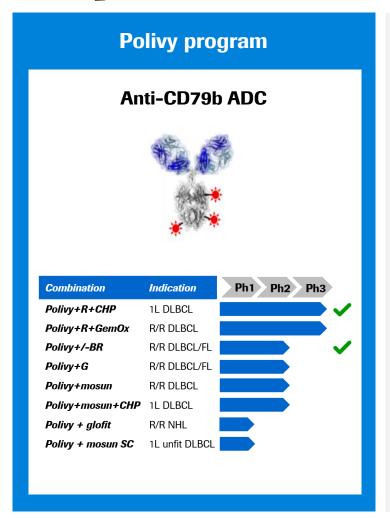
Hematology: Expanding into AML, MM and MDS

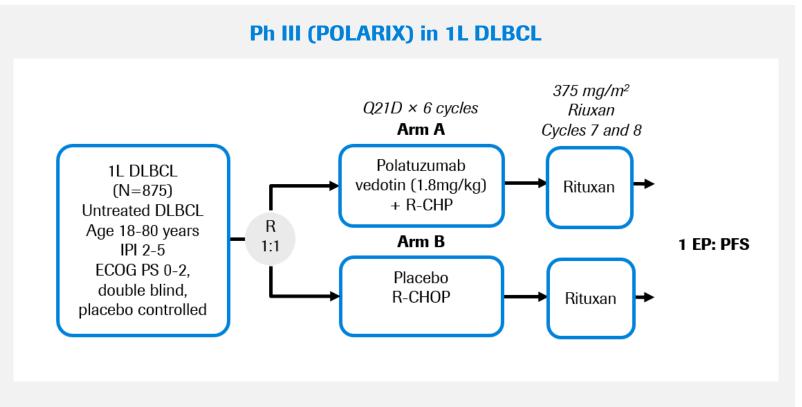




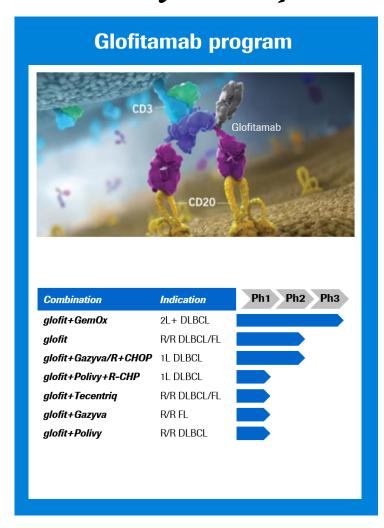


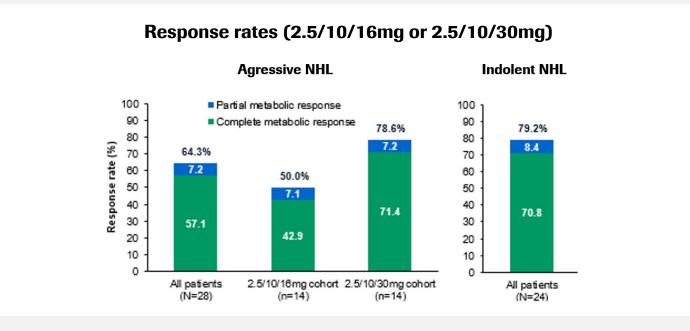
Total MM & AML market growing to USD 25bn & 7bn, respectively by 20241




Hematology: Polivy in DLBCL

First positive Ph III (POLARIX) in a curative setting in the last 20 years

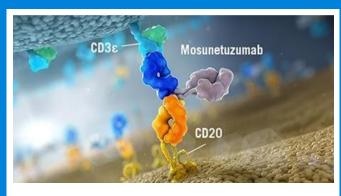


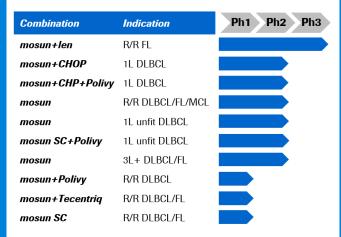

- Positive Ph III (POLARIX) results for Polivy + R-CHP in 1L DLBCL to be presented at upcoming conference
- Ph III (SUNMO) in 2L+ DLBCL for Polivy + mosunetuzumab to be initiated

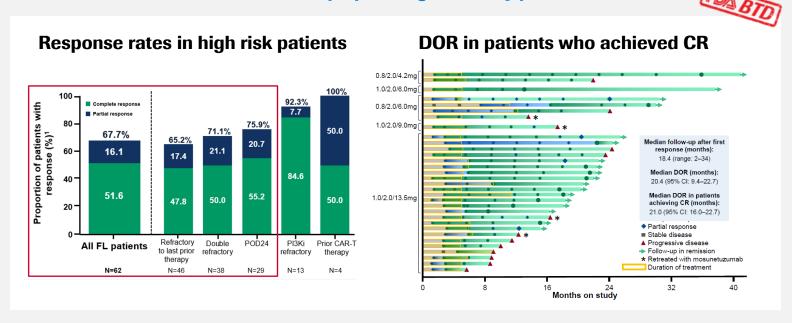
Hematology: Glofitamab in NHL On track for early 3L+ DLBCL filing in 2022

Ph I glofitamab step up dosing in heavily pretreated R/R NHL

- High and durable response rates in patients who have failed multiple lines of treatment
- Good safety profile with manageable CRS largely confined to cycle 1
- Ph III (STARGLO) for glofitamab + GemOx in 2L+ DLBCL started in Q1 2021
- Combination development with G/R-CHOP and Polivy+/- R-CHP in DLBCL on-going

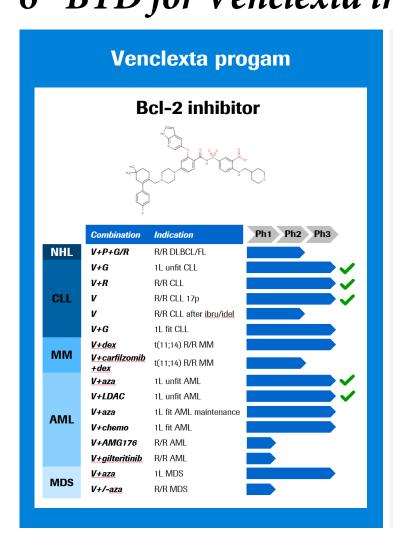

Hematology: Mosunetuzumab in NHL



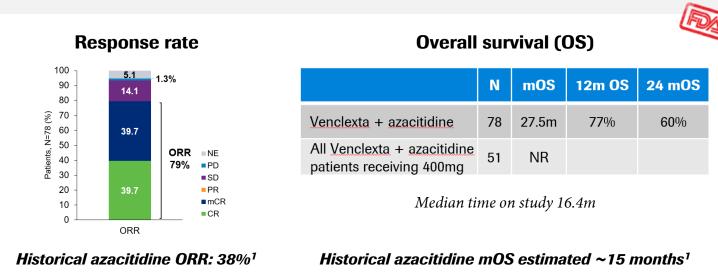


Mosunetuzumab program

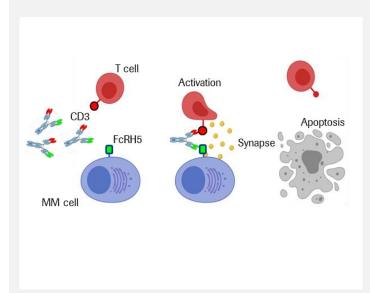
Ph I mosunetuzumab step up dosing in heavily pretreated R/R FL


- Fixed duration treatment induced strong and durable responses in multiple high-risk subgroups;
 outpatient regimen
- Ph III (CELESTIMO) mosunetuzumab + lenalidomide in 2L+ FL initiated
- Ph III (SUNMO) mosunetuzumab + Polivy in 2L+ DLBCL initiated
- Combination development with CHOP, Polivy+CHP, Tecentriq and as SC formulation on-going

Hematology: Venclexta in CLL, AML, MM, MDS 6th BTD for Venclexta in MDS obtained



Ph I dose escalation Venclexta + azacitidine in 1L high-risk MDS


- Ph I results for Venclexta + azacitidine in 1L MDS showed strong efficacy, durability and acceptable safety; Ph III (VERONA) in 1L MDS started in Q4 2020
- Ph III (Viale-M) in 1L fit AML maintenance and Ph III (HOVON) in 1L fit AML initiated
- Ph III (CristaLLo) in 1L fit CLL (primary endpoint MRD) ongoing; read-out expected in 2023
- Ph III (CANOVA) in t(11;14) MM ongoing; results expected in 2022

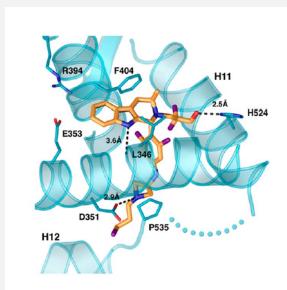
Hematology: Cevostamab in R/R MM with unique MOA


Promising activity in heavily pretreated patients

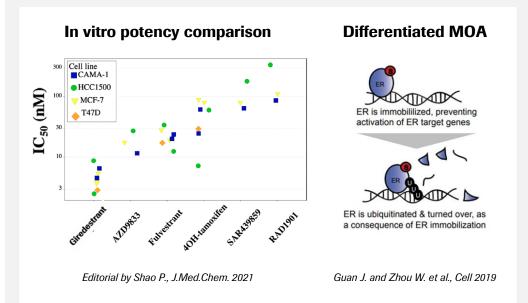
FcRH5 x CD3 bispecific mAb

- · Bispecific T-cell engaging antibody
- FcRH5 expressed exclusively in the Bcell lineage and across all maturation stages (elevated in myeloma cells and normal plasma cells vs normal B cells)¹
- Expressed on 100% of myeloma cells

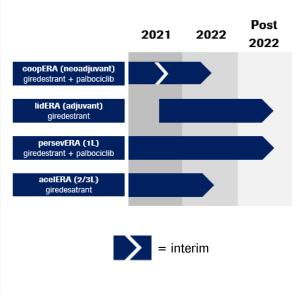
Ph I dose escalation interim results


- Preliminary Ph I dose escalation data: Strong response rates in refractory patients (7/17, ORR: 41%) and patients with prior BCMA (5/8, ORR: 63%); Responses observed across all FcRH5 expression levels (FcRH5 expression on myeloma cells detected in all patients)
- Manageable toxicities with step-up dosing (CRS most common in C1; nearly all grade 1-2; one patient with grade 3 CRS)
- Ph I update expected later in 2021

¹ Li et al. Cancer Cell 2017;31:383–95; Cohen A.D. et al., ASH 2020; MM=multiple myeloma; mAb=monoclonal antibody; MOA=mechanism of action; CR=complete response; sCR=stringent CR; PR=partial response; VGPR=very good partial response; ORR=overall response rate; CRS=cytokine release syndrome


HR+/HER2- breast cancer: Giredestrant a next generation SERD Well differentiated with outstanding efficacy/safety profile

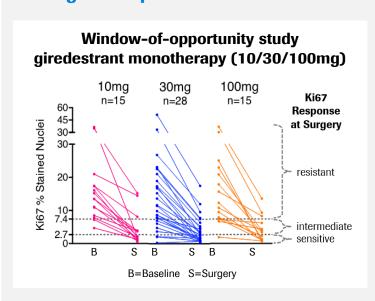
Selective ER degrader (SERD)



- Highly potent with improved efficacy versus previous SERDs
- High potency + minimal safety findings lead to wide nonclinical safety margins

Well differentiated small molecule

Trial program accelerated



- Potentially best-in-class efficacy being 7-15x more potent than other SERDs in development
- Differentiated MOA leads to immobilization of the ER prior to its degredation
- Well-tolerated alone or in combination with standardized dose of 30mg once daily; no DDI observed

HR+/HER2- breast cancer: Giredestrant with early promising data Strong efficacy/safety data in early and late settings

Stage I-III operable HR+/HER2-BC

- Encouraging impact on proliferation (78% geomean reduction in Ki67); 55% of tumors with complete cell cycle arrest at 2 weeks*
- Efficacy supportive of 30mg dose
- · Ph III (lidERA) adjuvant started
- Ph II (coopERA) neoadj. results at ESMO

Metastatic HR+/HER2- BC (≤2L)

Ph Ib giredestrant monotherapy (30mg)

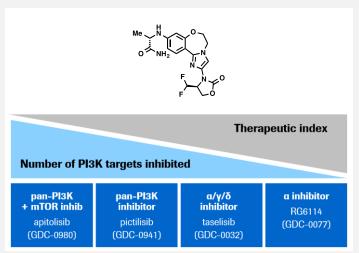
Clinical activity	(n=41)
ORR**	20%
CBR	55%
Prior fulvestrant	3/8 (38%)
Prior CDK4/6i	11/26 (42%)
ESR1 mut	13/17 (76%)

- Strong efficacy in all patient subgroups including patients with ESR1 mutations
- Well tolerated at all doses with no DLTs;
 low treatment discontinuation; no clinically relevant bradycardia or ocular toxicity

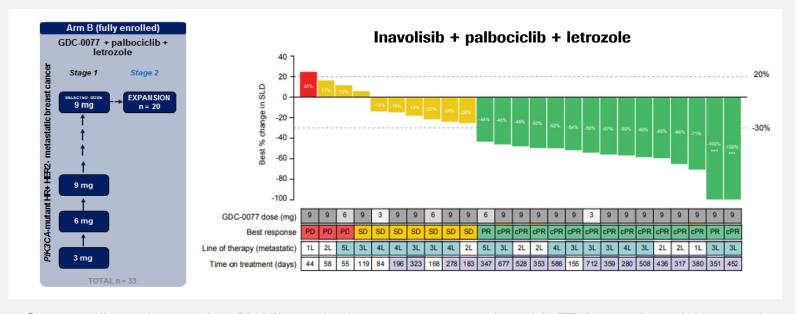
Pivotal Ph II (accelERA) data in 2/3L in 2022

Metastatic HR+/HER2- BC (≤2L)

Ph lb giredestrat (100mg) + palbociclib (125mg)


Clinical activity	(n=48)			
ORR	33%			
CBR	81%			
mPFS	9.3 months			

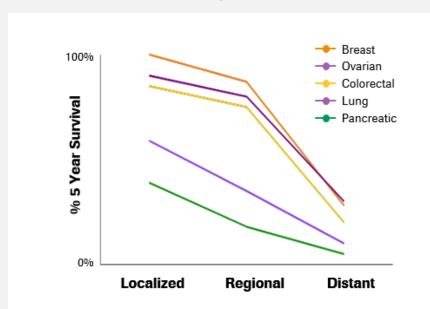
- Potentially best-in-class efficacy in combination with a CDK4/6 inhibitor in pre-treated patients, regardless of ESR1 resistance mutations
- No drug-drug interactions observed
- · Well-tolerated up to 100 mg daily
- Expansion cohort at 30 mg daily on-going
- Ph III (persevERA) giredestrant + palbociclib in 1L started in Q4 2020


HR+/HER2- breast cancer: Inavolisib in *PIK3CA*-mutant tumors *Ph III for potentially best in class PI3Kα inhibitor started*

Pl3Ka inhibitor/mutant Pl3Ka degrader

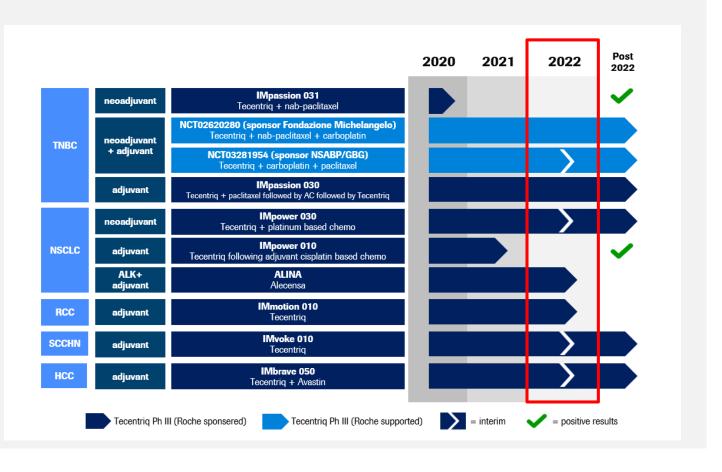
- Differentiation from previous Pl3K inhibitors:
 - More selective for PI3Ka subunit
 - Greater safety margins
 - Better in vivo efficacy
- Degrades mutant Pl3Ka efficiently
- Combines well with other therapies

Ph I (dose escalation and expansion cohort)



- Strong efficacy in ongoing Ph I/Ib as single agent or as combo with ET (letrozole or fulvestrant)
 +/- palbociclib in patients with locally advanced or metastatic PIK3CA-mutant solid tumors
- Favorable safety as single agent or when combined
- Ph III (INAVO120) inavolisib + palbociclib + letrozole in 1L PIK3CA-mutant HR+/HER2- mBC started in Q1 2020

Adjuvant program: Pivotal read-outs in 2022 Earlier treatment increases chances for cure

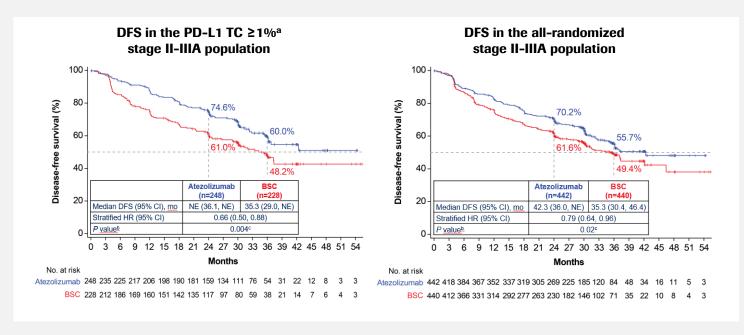


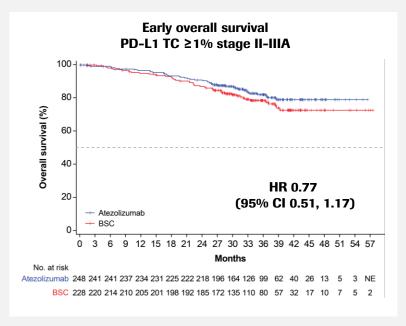
Outcomes by cancer type and stage at diagnosis ¹

- Early detection technologies and increasing screening will allow for earlier treatment
- Early treatment increases cure rates and reduces overall treatment rates

Ph III adjuvant trial program

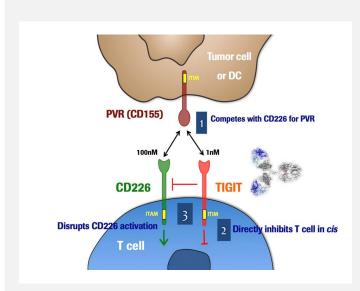
59


¹ National Cancer Institute, SEER database, literature review

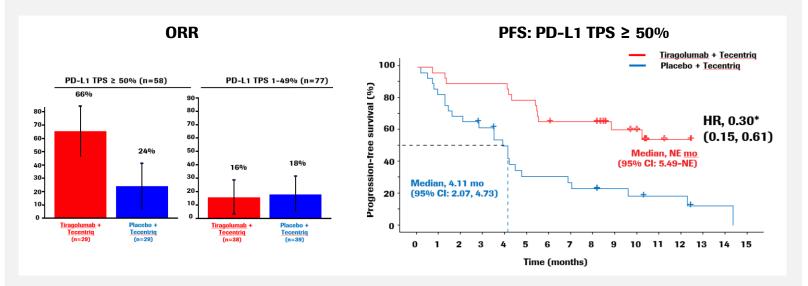


Lung franchise: Tecentriq in adjuvant NSCLC First positive CIT read-out defining a new standard of care

Ph III (IMpower010) interim results in adjuvant NSCLC



- Improvement in DFS for PD-L1+ Stage II-IIIA (HR=0.66) and all stage II-IIIA patients (HR=0.79); Follow-up will continue for DFS in ITT (Stage IB-IIIA)
- OS data immature at time of DFS interim analysis; next OS interim and DFS final expected in 2022
- Filed with FDA under RTOR and Project Orbis (priority review with PDUFA date set for December 1^{rst})

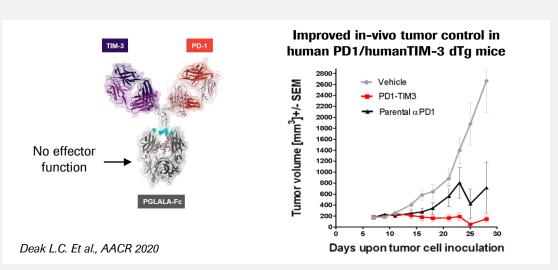

Lung franchise: Tiragolumab + Tecentriq in NSCLC & SCLC Four Ph II/III tiragolumab studies reading out in 2022

Anti-TIGIT mAb

- Fully human IgG1/kappa Ab with intact Fc region that blocks the binding of TIGIT to its receptor PVR
- · Could restore anti-tumor response and could complement the activity of anti-PD-L1/PD-1 antibodies

Randomized Ph II (CITYSCAPE) results in 1L NSCLC

- Tiragolumab + Tecentriq showed clinically meaningful improvement in ORR and PFS in the ITT population with a greater magnitude of improvement in the PD-L1 TPS ≥ 50% subgroup
- Tiragolumab + Tecentriq was well-tolerated with a safety profile similar to the control arm
- Ph III in 1L PDL1+ NSCLC (SKYSCRAPER-01), 1L ES-SCLC (SKYSCRAPER-02) and 1L esophagel cancer (SKYSCRAPER-08) and Ph II in 2L+ PDL1+ CC (SKYSCRAPER-04) to read-out in 2022
- Large Ph II/III program with 7 pivotal studies in 5 indications on-going



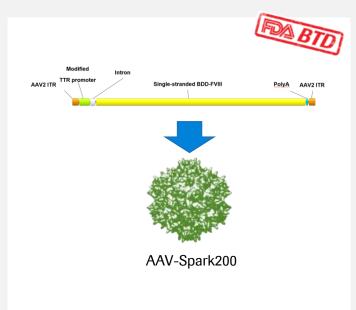
Different technologies applied to leverage T cell responses PD1 x LAG3 and PD1 x TIM3 bispecific Abs moved into Ph II

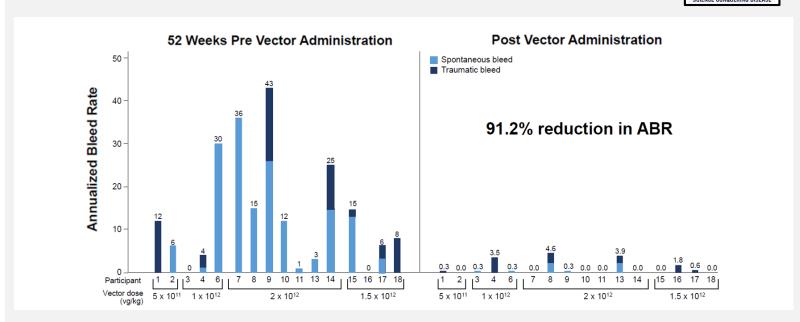
PD1 x LAG3 bispecific Ab Improved in-vivo tumor control in pancreatic mouse model (BxpC3) Tumor volume [mm³]+/- SEM CEACAM5 CD3 TCB 2.5mg/Kg + Nivolumab 1.5mg/Kg CEACAM5 CD3 TCB 2.5mg/Kg + Nivolumab 1.5mg/Kg + antiLag3 (BM: CEACAM5 CD3 TCB 2.5mg/kg anti-PD1 3mg/Kg No effector function Deak L.C. et al., SITC Meeting 2019 Study Day

- PD1 x LAG 3 shows improved control of tumor growth and eradication
 PD1 x TIM 3 shows improved control of tumor growth and vs. combination of the two parental anti-PD1 and anti-LAG3 mAbs
- Bispecific mAb binding to PD-1 (high affinity) and LAG3 (low affinity)
- May reinvigorate exhausted T cells and potentially targets T resource cells and their progeny by blocking two co-inhibitory checkpoint receptors
- Ph I monotherapy in 2L+ melanoma and 2/3L NSCLC ongoing

PD1 x TIM3 bispecific Ab

- eradication vs. PD1 in animal models
- Bispecific mAb binding to PD-1 (high affinity) and TIM3 (low affinity)
- May reinvigorate exhausted T cells by blocking co-inhibitory checkpoint receptors
- Ph I monotherapy in 2L melanoma, 2/3L NSCLC, 2L ESCC ongoing

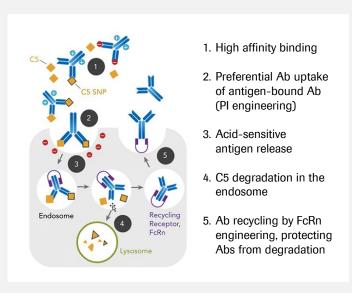

Non-malignant hematology: SPK-8011 in hemophilia A


Efficacy and safety data up to 4 years

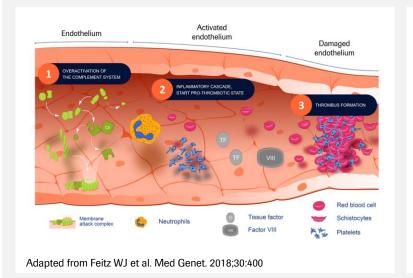
Hemophilia A gene therapy

- Bio-engineered adeno-associated viral (AAV) vector utilizing the AAV-LK03 capsid (Spark200)
- Contains a codon-optimized human factor VIII gene under the control of a liver-specific promoter

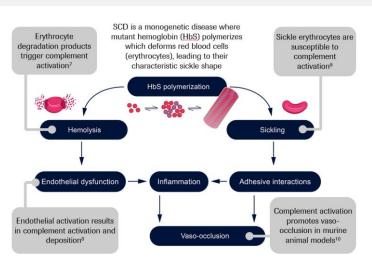
Ph I/II results (SPK-8011-101)



- 15 (out of 17) participants maintained expression with stable, durable Factor VIII activity and a 91% reduction in the ABR and 97% reduction in AIR (median follow up was 2.8 yrs)
- SPK-8011 shows acceptable safety in the ranges of doses studied: 5x10¹¹-2x10¹² vg/kg
- Further dose optimization and selection of immunomodulatory regimen ongoing
- Generating data to enable Phase III start


Non-malignant hematology: Crovalimab in PNH, aHUS, SCD Recycling anti-C5 mAb for maximal complement inhibition

Anti-C5 mAb



- Chugai engineered, anti complement component 5 (C5) recycling mAb¹⁻⁶
- Engineered to enable maximal, longlasting neutralization of C5 in complement mediated diseases
- Convenient SC Q4W dosing at home

Atypical Hemolytic Uremic Syndrome(aHUS)

Sickle Cell Disease (SCD)

- Ph III (COMMODORE 1/2) in PNH (paroxysmal nocturnal hemoglobinuria) achieved firstpatient-in in H2 2020; first PNH results expected in 2022
- Ph III in aHUS for adults (COMMUTE-A) initiated in Q2 2021; Ph III for pediatrics (COMMUTE-P) to start in Q4 2021
- Ph I for acute SCD initiated; Ph II in chronic SCD to start in Q4 2021
- Development in additional complement-mediated diseases is being explored

¹ Röth A et al. Blood 2020;135:912–20; ² Fukuzawa T et al. Sci Rep 2017;7:1080; ³ Sampei Z et al. PLoS One 2018;13:e0209509; ⁴ Röth A, Nishimura J. Centro Congressi Federico II 2019; ⁵ Röth A et al. ASH 2018; ⁶ Sostelly A et al. ASH 2019; ⁷ Röth A et al. EHA 2019; ⁸ Peffault de la Tour, R. et al. EHA 2020; PNH=paroxysmal nocturnal hemoglobinuria; ⁷ Merle NS et al. JCI Insights 2018;3:e96910; ⁸ Roumenina LT et al. Am J Hematol. 2020;95:456; ⁹ Chudwin DS et al. Clin Immunol Immunopathol. 1994;71:199: ¹⁰ Vercellotti GM et al. Am J Hematol. 2019;94:327.

Roche Late Stage Pipeline Event 2021

Late Stage Pipeline Neuroscience

Paulo Fontoura M.D. Ph.D. | Global Head Neuroscience, Immunology, Ophthalmology, Infectious and Rare Diseases, Clinical Development

Late stage pipeline Neuroscience & Immunology

1. Multiple sclerosis

- Ocrevus high dose
- Fenebrutinib
- Floodlight App

2. Alzheimer's disease

- Gantenerumab
- · Gantenerumab brain shuttle
- Semorinemab & bepranemab

3. Spinal muscular atrophy

Evrysdi

5. Duchenne muscular dystrophy

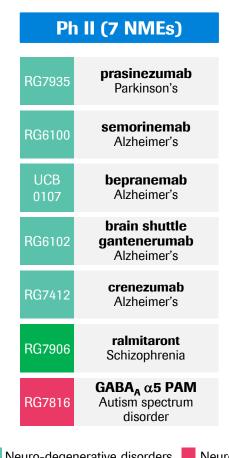
• SRP-9001 Gene therapy

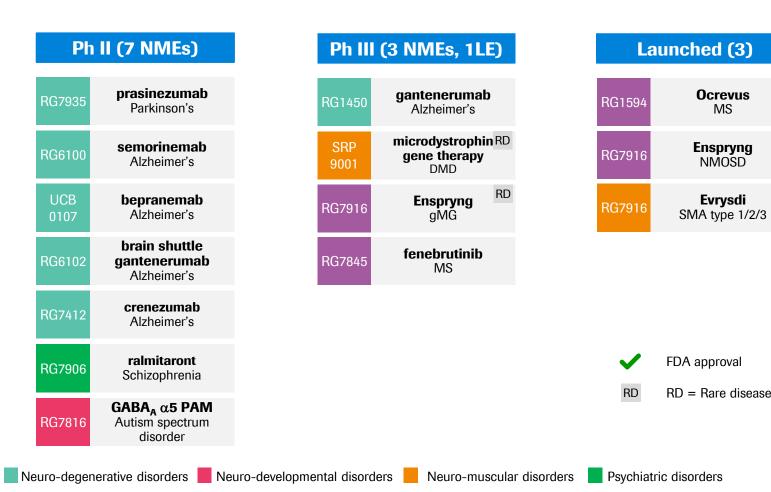
6. Parkinson's disease

Prasinezumab

7. Immunology

- Enspryng
- Gazyva
- Recombinant human pentraxin-2





Ph I (4 NMEs) **UBE3A LNA** RG6091 Angelman syndrome RG7637 undisclosed RG6237 undisclosed undisclosed

Neuro-immunologic disorders

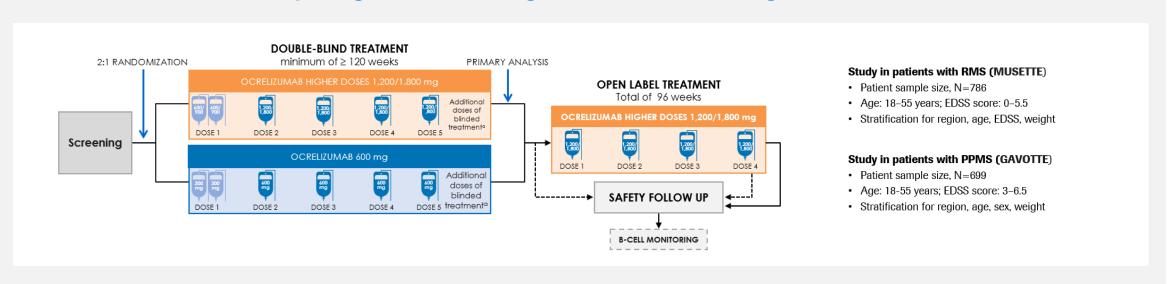
New technology platforms applied in Neuroscience and I2O*

Small molecules	Bi-specifics	Fusion protein	mAb	Antibody drug conjugate	Neoantigen vaccines	Personalized T cells	Antisense RNA	Gene therapy
CI O O O O O O O O O O O O O O O O O O O	2:1 format 1:1 format			***	iNeST platform: mRNA- LPX Liposome	Activated T cell with neoantigen specificity	Transcription Antisense oligensus bereide (ASC)	AVV Adeno associated virus
 ipatasertib inavolisib giredestrant KRAS G12C TLR7 agonist belvarafenib SHP2i 	 mosunetuzumab glofitamab cibisatamab Her2 x CD3 glypican-3 x CD3 cevostamab PD1 x TIM3 PD1 x LAG3 	 PD1-IL2v CD19-4-1BBL FAP-4-1BBL MAGE-A4 ImmTAC IL15/IL15Ra-Fc FAP-CD40 	tiragolumabCD25 mAbcodrituzumabCD137	preclinic	autogene cevumeran	programmed T cells	Factor B ASOHBV siRNAPDL1 LNAUBE3A LNA	• SPK-8011 • SPK-8016 • SPK-3006 • SPK-7001 • SRP-9001
Target oncogenes, induce apoptosis, supress tumor growth	TYRP1-CD3 Engage and activate T cells to kill tumour cells	Amplify immune response	Amplify immune response	Targeted toxic payload	Patient's neo-antigens for anti-tumour immune response	Patient's neo-antigens for anti-tumour immune response	Recombinant proteins	Oncolytic adenovirus
 fenebrutinib ralmitaront GABA Aa5 PAM PTH1R agonist NLRP3 inhibitor 	faricimabFIXa x FXFGFR1 x KLBVEGF x Ang2 Duta	 brain shuttle gantenerumab efmarodocokin alfa lgG-IL2 	 crovalimab gantenerumab prasinezumab semorinemab etrolizumab 		Neuroscience = and I20 pipeline	Products approved	• rh pentraxin-2	• Type 5
Abx MCPCpAMAT-527			TLR4 mAbHtrA1 mAbanti-tryptase		—— pipeline		ти рени алит-2	adenovirus

^{*} List of pipeline molecules shown below is not complete; Molecules in the blue box are developed in Neuroscience and I2O (Immunology, Infectious diseases, Ophthalmology)

Digital endpoints to drive scientific progress

Delivering new patient insights and building holistic solutions for patients


		3	Ķ	\Box	360
Disease Area	Cognition	Hand Motor Function	Gait & balance	Vocalization	Activity & sociability
Parkinson	•	•	•	•	•
Huntington	•	•	•	•	•
SMA		•	•	•	
Multiple Sclerosis	•	•	•		•
Alzheimer	•			•	•
Autism	•			•	•
Schizophrenia					•

- Clinical trials utilizing mobiles, wearables and gaming devices
- More sensitive, precise and objective data collection and monitoring of disease progression
- Continuous and longitudinal measurement captures episodic and rare events
- Reduced assessment burden and greater real-world relevance benefiting physicians and patients

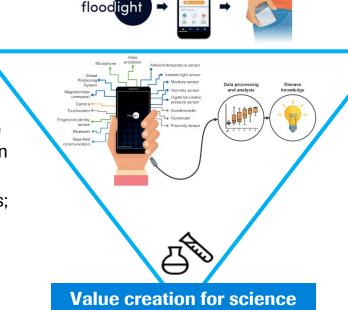
Multiple sclerosis: Higher dose Ocrevus New Ph III program in RMS and PPMS started in 2020

Ph III study design for Ocrevus Higher Dose versus 600 mg in RMS and PPMS

- Ocrevus showed a significant benefit on 12/24W-CDP, ARR, MRI measures in Ph III studies in RMS and PPMS and 7 year OLE
- Exposure/response analysis of Ph III data suggests a higher dose could lower the risk of disability progression without compromising safety
- Two double-blind, randomized Ph III studies were designed to test higher dose Ocrevus; the selected higher dose, given every 24 weeks, is 1,200 mg for patients <75 kg or 1,800 mg for patients ≥75 kg
- Ph III (MUSETTE) in RMS and Ph III (GAVOTTE) in PPMS started in 2020

Multiple sclerosis: Floodlight launched in US and EU

Building ecosystems to serve patients, society and scientific progress



Value creation for patients

- MS progression, often undetected by current clinical scales
- Provides an objective assessment of disease status; empowers patients in shared decision making, enhancing earlier access to care
- Closely co-created with patient communities; studies show high retention rates

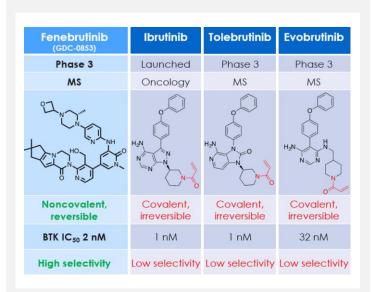
Value creation for society

- Earlier intervention has the potential to improve health outcomes and reduce long term health care costs
- Floodlight MS is launched in close collaboration with healthcare providers, enabling RWD opportunities that improve health care utilization

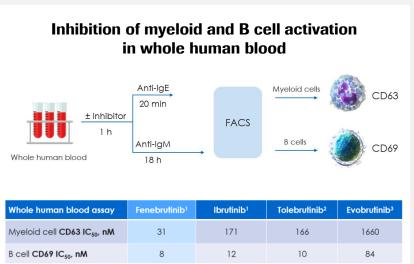
"I'm 100% behind the initiative and am very enthusiastic about it. It's cool that this was clearly under development before the pandemic and it fits well with my challenges: 90% of patients are virtual and there are lots of time constraints between clinical visits." Dr. Shin

• Rigor of measurements & robust development define new standards

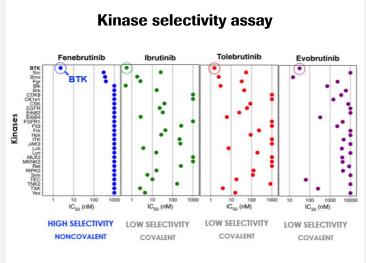
- Generate disease insights and support future drug development
- Collaborations create consensus on new digital measurements


Pharma vision 2030: Providing more patient benefit at less cost to society

SaMD=software as medical device

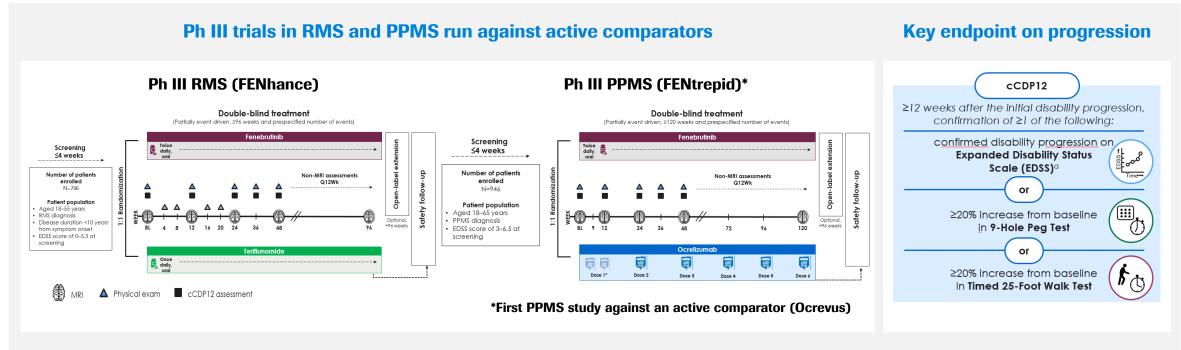


BTK inhibitor

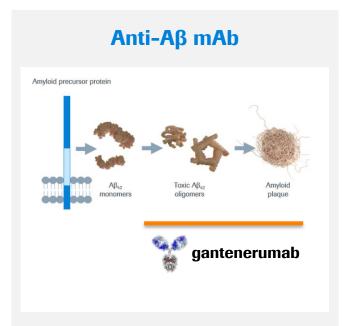


- Oral, highly selective and only reversible noncovalent BTK inhibitor in Ph III
- Long residence time bound to BTK mimics durable inhibition of a covalent inhibitor, but without the potential safety risks of covalent BTK inhibition

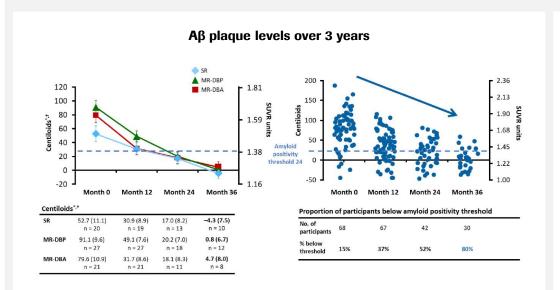
Dual MOA


Outstanding selectivity profile

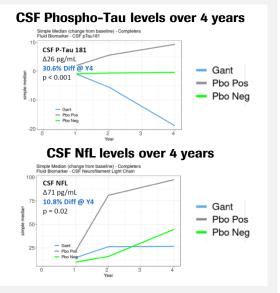
- Dual MOA: Fenebrutinib potently inhibits myeloid (basophil) and B cell activation in human blood; this may reduce both acute and chronic inflammation in MS
- In a kinase selectivity assay fenebrutinib was found to be 130x more selective for BTK which may reduce off target effects and thus improve safety


Multiple sclerosis: Fenebrutinib trials in RMS and PPMS started Well established clinical safety profile in autoimmune diseases

- Innovative Ph III trial design with cCDP12 providing a more thorough approach to "disease progression" by assessing upper limb function, which might lead to earlier detection of disease progression
- Well established safety profile due to 14 clinical studies (across 3 autoimmune diseases) with overall 1360 study participants:
 - Generally well tolerated, mostly non-serious, mild and self-limiting adverse events
 - Other potential BTKi class effects (infection, severe bleeding, tachyarrhythmias) appear less relevant due to the high BTK selectivity seen
- Ph III program in RMS and PPMS started in 2020



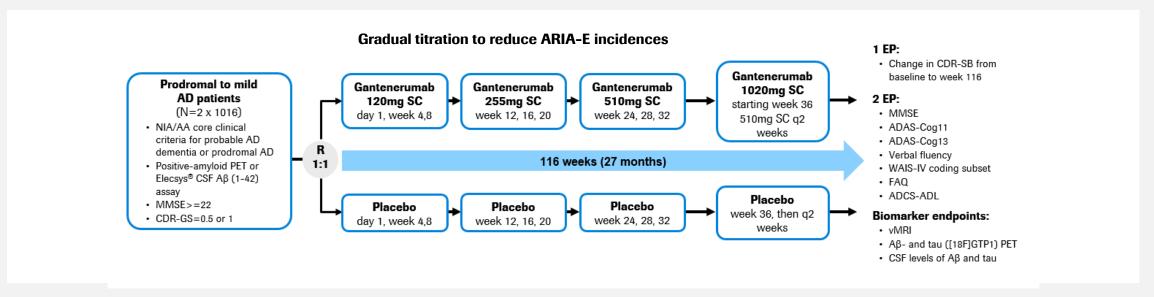
Alzheimer's disease: Gantenerumab SC targeting Amyloid β (A β) Strong target engagement and downstream biological impact



- Fully human, anti-Aβ mAb (IgG1) with high affinity to aggregated forms of Aβ
- Highest affinity for neurotoxic oligomers and plaques ^{1,2}
- SC administration enables flexibility of home administration

OLE studies shows robust Aß plaque removal*

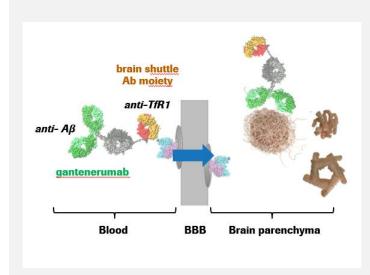
DIAN-TU study shows downstream impact


- $\hbox{ \bullet OLE studies: Gantenerumab lowers $A\beta$ plaques below positivity threshold towards floor levels without plateau } \\$
- 80% of patients Aβ-negative after 3 years
- Gantenerumab reduces levels of downstream biomarkers (p-Tau, t-TAU) and blocks increases of markers of neurodegeneration (NfL) in patients with familial AD (DIAN-TU study)

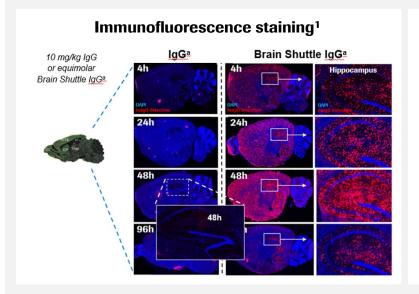
¹ Bohrmann B, et al. J Alzheimer's Dis 2012; 2. Ostrowitzki S, et al. Arch Neurol 2012; Bateman R. J. et al, AAT-AD/PD 2020; Klein G et al, CTAD 2020; Klein G. et al., J Prev Alzheimers Dis 2021;8(1); OLE=open label extension; NfL=neurofilament light chain; * OLE studies for the former Ph III studies SCarlet RoAD and Marguerite RoAD; SC=subcutaneous; CSF=cerebrospinal fluid

Alzheimer's disease: Gantenerumab SC in early AD patients Ph III program with optimized design to maximize exposure

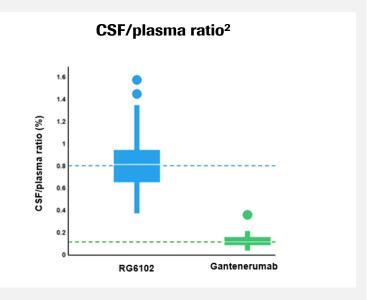
Global, randomized, double-blind, placebo-controlled Ph III trial design (GRADUATE I/II)



- Two parallel studies with large sample size of ~1,000 participants patients each expected to deliver a clear and robust data set in 2022
- Optimized titration scheme to reduce incidence of ARIA-E and maximize exposure for all patients regardless of ApoE4 genotype
- Well powered PET substudies to detect-biomarker changes including Aβ and tau
- Treatment duration of 27 months to optimize detection of clinical benefit
- First and only late-stage AD program to offer SC formulation enabling flexibility and convenience of home administration


Alzheimer's disease: Gantenerumab brain shuttle Vision: Superior target access leading to slowing of AD progression

Gantenerumab brain shuttle

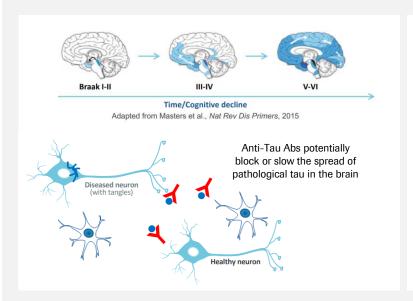


- Gantenerumab brain shuttle is a fusion protein combining gantenerumab with a transferrin receptor (TfR1) binding Ab moiety to achieve efficient transport over the BBB and target Aβ plaque engagement in the brain
- Technology could also be applied to other CNS disorders

Preclinical data

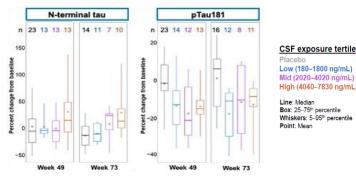
Ph I PK/PD data in healthy volunteers

- Preclinical work in mouse and monkey models provides in vitro and in vivo evidence that TfR1 receptor binding facilitates transcellular transport across the Blood Brain Barrier (BBB)
- Initial Ph I PK data show encouraging 6 to 8-fold increase in the CSF/plasma concentration ratio when comparing the gantenerumab brain shuttle to historical gantenerumab data
- Phase I/II study is underway to test safety, tolerability, PK, and PD (amyloid PET) in people with prodromal or mild-to-moderate AD



Alzheimer's disease: Two anti-TAU mAbs in development Ph II (LAURIET) semorinemab results show first hint of clinical activity

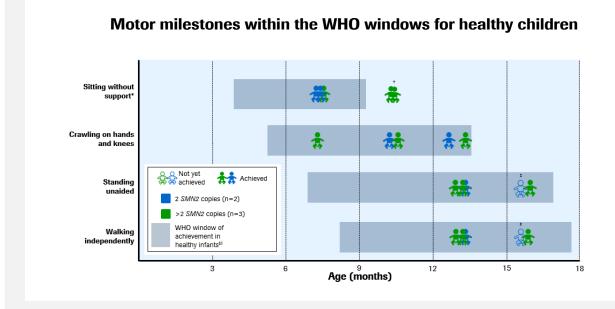
semorinemab semorinemab | Se

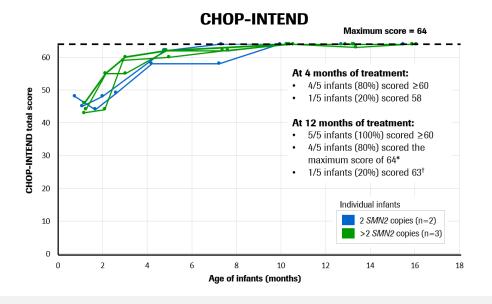

- <u>Semorinemab:</u> N-terminal anti-tau mAb binding to all isoforms independent of their phosphorylation status; optimized for high dosing
- Bepranemab: Mid-domain anti-tau mAb binding to a different epitope

Proposed MOA

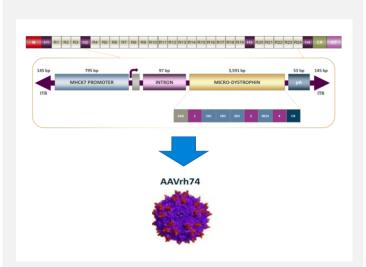
Ph II (TAURIEL) PD results

- Ph II (LAURIET) study with semorinemab in mild-to moderate AD showed statistically significant and potentially clinically meaningful effect on cognition as measured by ADAS-Cog11; no treatment effect observed on ADCS-ADL, MMSE or CDR-SB
- LAURIET OLE is continuing, with additional analyses in progress; data to be presented at CTAD
- Ph II study in early AD (TAURIEL) did not meet its primary (CDR-SB) or secondary endpoints


Spinal muscular atrophy: Evrysdi in type 1/2/3 SMA Excellent preliminary data in presymptomatic babies

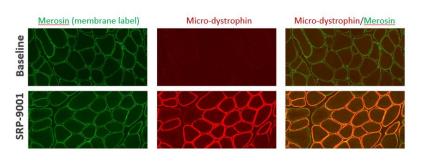


Ph III (RAINBOWFISH) interim results in presymptomatic babies with SMA



- Presymptomatic babies treated with Evrysdi for at least 12 months were able to sit, stand and walk and achieved motor milestones within the WHO windows for healthy children
- They reached near maximum CHOP-INTEND scores by 4–5 months of age
- Evrysdi expected to become the most prescribed SMA treatment in the US in 2021

Duchenne muscular dystrophy: Gene therapy SRP-9001 Positive expression and safety data for commercial drug material

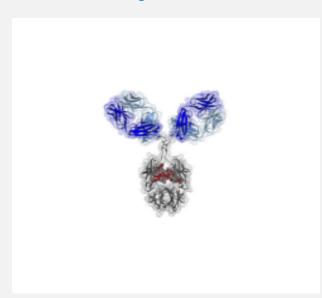

Micro-dystrophin gene therapy

- AAVrh74 vector: low likelihood of preexisting immunity and high tropism for skeletal & cardiac muscles
- Expression potentiated by the MHCK7 promoter in cardiac & skeletal muscles
- Transgene retains critical elements of dystrophin for a functional protein

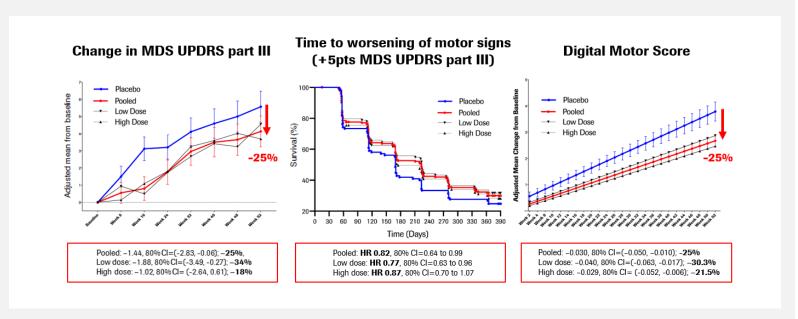
Ph Ib (SRP-9001-103, cohort 1) expression results at week 12 in 4-7 y.o. ambulatory patients (n=11)

Immunofluorescence (IF) staining

Expression summary


Vector genome copies per nucleus	3.87
% Normal expression by Western Blot	55.4 ± 43.4*
% Dystrophin positive fibers by IF	57.7 ± 22.2*
% Intensity by IF	75.9 ± 46.4*

- * Change from baseline (CBO)
- Micro-dystrophin protein expression increased by +55.4% from baseline and muscle fibers positive for micro-dystrophin increased by +57.7% from baseline
- Safety profile consistent with prior studies, with no new safety signals identified
- Results provide preliminary confirmation of the manufacturing and analytics of commercially grade material, which enables building capacity to supply the DMD population
- Planning for global Ph III trials in ambulatory and non-ambulatory DMD patients are ongoing

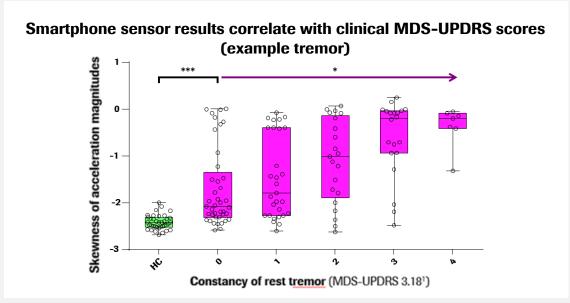

Parkinson's disease: Prasinezumab with signals of efficacy Ph IIb started to further define patient population and endpoints

Anti-a-synuclein mAb

- Humanized mAb designed to target aggregated forms of α-synuclein
- Inhibiting cell-to-cell spreading of pathogenic forms of α-synuclein, resulting in slowing of Parkinson's disease progression

Ph II (PASADENA part 1) results at 52 weeks

- Ph II (PASADENA) study did not meet its primary endpoint (MDS UPDRS total score)
- Prasinezumab was well tolerated showing efficacy signals in slowing of clinical decline of motor symptoms (MDS UPDRS part IIII, digital motor outcome measures) warranting further follow up; longer term data to be presented at upcoming conferences
- Ph IIb (PADOVA) started in 2021 in patients with early PD that are on symtomatics incl L-DOPA



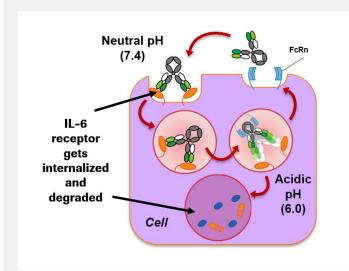
Parkinson's disease: First Ph II digital biomarker results Digital biomarkers support clinical drug development

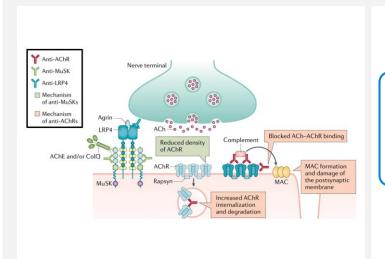
Daily assessment for 6 months

Provided phone Daily Active Tests Passive Monitoring Motor behavior in everyday life Phonation Rest Postural Tapping Balance Walking Gait Mobility Frovided phone Secure storage and data processing

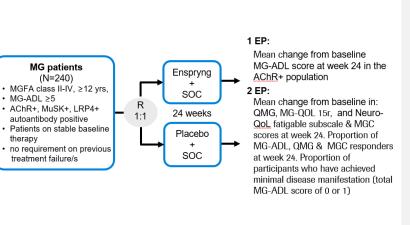
Ph II (PASADENA) digital biomarker results

- The PASADENA digital biomarker test suite on the smart phone enables daily quantification of fluctuating symptoms in Parkinson's disease
- Preliminary data show clinical validity, strong patient adherence and high test-retest reliability
- · Digital endpoints provide already today decision-making support for drug development
- Potential future use in patient & treatment monitoring, identifying subclinical signs in prodromal patients, or as primary outcomes measures


Enspryng in myasthenia gravis (MG)


Recycling Ab for maximal inhibition of IL-6 signaling

Anti-IL-6 receptor mAb



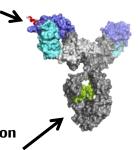
- Recycling mAb with high-affinity to soluble and membrane-bound IL-6R
- Engineered to enable maximal inhibition of IL-6 signalling
- Convenient SC Q4W home dosing

MG: Autoantibodies at the neuromuscular junction

Ph III (LUMINESCE) trial design

- MG is a chronic, autoimmune disease of the neuromuscular junction, causing fatigable muscle weakness; pathophysiology involves autoantibodies (~80% have anti-AChR Abs; 10% anti-MuSK Abs; <5% anti-LRP4 Abs) at the neuromuscular junction disrupting neuromuscular transmission
- IL6 blockade has the potential to lower pathogenic autoantibody production
- High unmet need: 10% of patients failing therapies; ~80% with no complete stable remission
- Ph III (LUMINESCE) in MG initiated; actively exploring other potential indications

Immunology: Gazyva in LN, MN, SLE

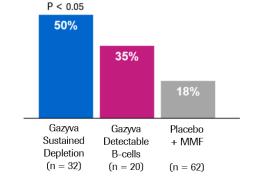


Potential benefit in autoimmune diseases through sustained B cell depletion

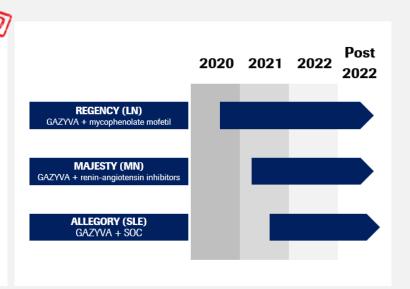
Glycoengineered anti-CD20 mAb to increases B-cell depletion

Type II anti-CD20 region

- · Increased direct cell death
- Decreased CDC
- Reduced internalization

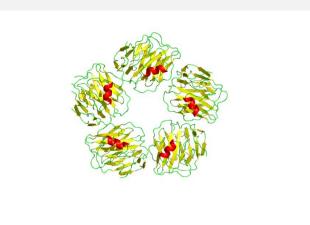


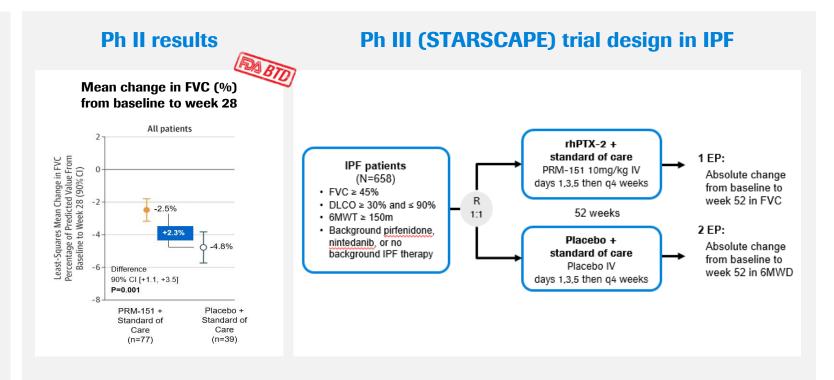
Glycoengineered Fc region · Higher FcYR affinity


- Increased ADCC/ADCP
- Greater potency than Rituxan in depleting peripheral and tissue B-cells
- · Studies suggest that tissue based B-cells play a major role in lupus nephritis

Ph II (NOBILITY) results in LN

Ph III trial program


- Ph II (NOBILITY) met both primary and key secondary endpoints with no new safety signals; Ph III (REGENCY) in lupus nephritis (LN) started in Q3 2020
- Ph III (MAJESTY) in membranous nephropathy (MN) started in Q2 2021
- Ph III (ALLEGORY) in systemic lupus erythematosus (SLE) to start in Q4 2021
- Additional indications and combination studies with pipeline assets under evaluation


Immunology: Recombinant human pentraxin-2 in fibrotic diseases

Ph III in IPF started in 2021

Recombinant human pentraxin-2 (rhPTX-2)

- PTX-2 is an immune regulatory protein that binds DAMPs (cell signals released from dying cells) with specificity for fibrotic tissue
- It plays a critical benefitial role during fibrosis shifting macrophages from a pro-inflammatory and pro-fibrotic to a pro-resolutive state

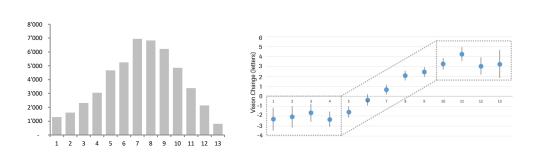
- Ph II results: rhPTX-2 slowed decline in lung function (FVC) and exercise capacity (6MWD)
 over 28 weeks compared with placebo, and a persistent treatment effect was observed in the
 open label extension study ^{1,2}
- Ph III (STARSCAPE) of rhPTX-2 + SOC (Esbriet or Ofev) in IPF started in Q1 2021

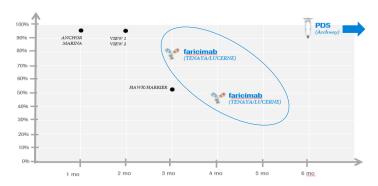
¹ Raghu et al; JAMA 2018;319(22):2299-2307; ² Raghu G et al. Lancet Respir Med 2019;7:657-664; IPF=interstitial pulmonary fibrosis; FVC=forced vital capacity; 6MWD= Six minute walk distance; SOC=standard of care; PTX-2=pentraxin-2; DAMPs=damage-associated molecular patterns

Roche Late Stage Pipeline Event 2021

Ophthalmology portfolio

Nilesh Mehta | Lifecycle Leader, faricimab


- 1. Ophthalmology landscape
- 2. Faricimab
- 3. Port Delivery System
- 4. Ophthalmology pipeline / PHC


Reduction in treatment burden is a key unmet medical need Real world vision outcomes are suboptimal

Adherence to IVT therapies is low and infrequent dosing in the real world correlates with vision loss

Only 50% of patients can be extended to Q3M dosing with current IVT therapies

Improved durability will help improve real world outcomes

faricimab and PDS are potential new standards of care

Faricimab

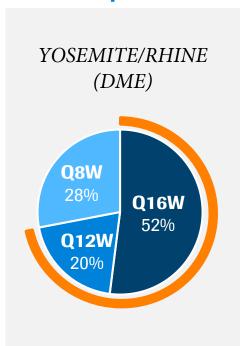
Filed in US and EU with approvals expected in 2022

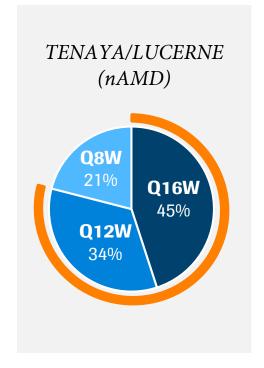
Faricimab improves vascular stability via neutralization of both Ang-2 and VEGF-A

Anti-Ang-2 Fab

Ang-2 binding leads to pericyte loss, inflammation, cell membrane instability, and increased VEGF sensitivity

Positive results over four studies in nAMD/DME


Indication	Ph1 Ph2 Ph3	
DME	YOSEMITE/RHINE	/
nAMD	TENA YA/LUCERNE	/
RVO	BALATON/COMINO	


- Joint filing in nAMD/DME in US, EU, and Japan
- Two Ph 3 studies initiated in RVO
- Long-term extension studies initiated in DME and nAMD

Faricimab: positive data in DME and nAMD Demonstrating advantages in durability (up to Q16W) and anatomy

75-80% of patients maintained on ≥Q12W dosing, ~50% of patients maintained on ≥Q16W dosing

 BCVA gains with faricimab Q8W or up to Q16W noninferior to aflibercept Q8W

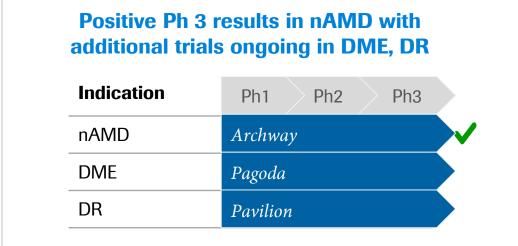
Disease control

- DME: better anatomic outcomes vs. aflibercept:
 - Change in CST favoring faricimab
 - More patients showing absence of DME
 - More patients showing absence of IRF
- nAMD: Meaningful reductions in CST

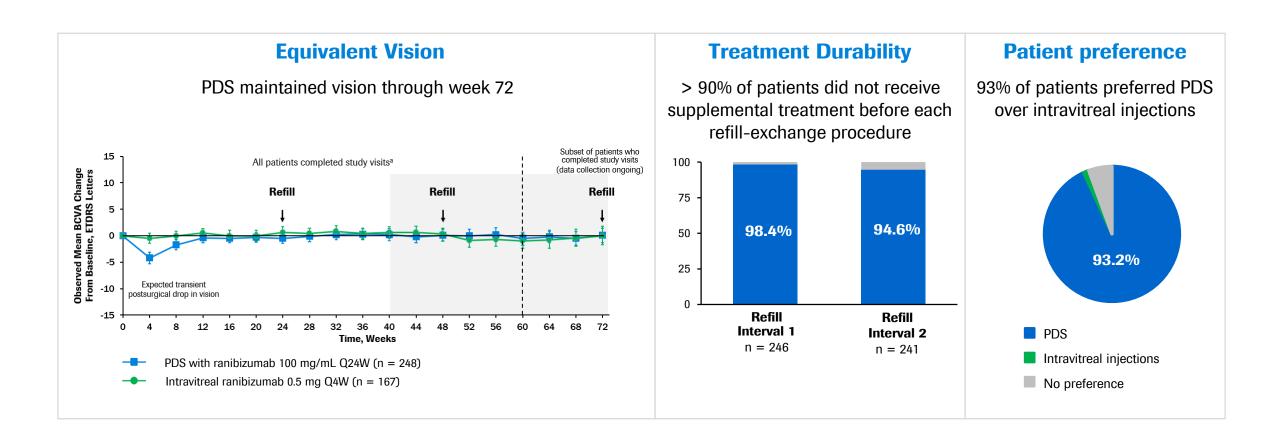
Safety

- Faricimab was well tolerated
- IOI event rates were low
- No cases of vasculitis or occlusive retinitis reported

Longterm data Year 2 data and long-term studies (RHONE-X, AVONELLE-X) are ongoing in DME, nAMD


With PDS, nearly all patients can be maintained on 6m dosing, improving patient compliance and real world outcomes

PDS implant: permanent, refillable intraocular implant.
 One-time ~30 min outpatient surgical procedure.


 Refill exchange: twice yearly in-office refill of the device using proprietary needle assembly. Can only be refilled with proprietary formulation (not other molecules or biosimilars)

- Ph 3b Velodrome study investigating 9m dosing initiated
- Ph 2/3 long-term extension study (Portal) in nAMD initiated
- Ph 3 Pagoda fully recruited; data expected in 2022

PDS: nearly all patients able to be maintained on 6m dosing Strong patient preference for PDS

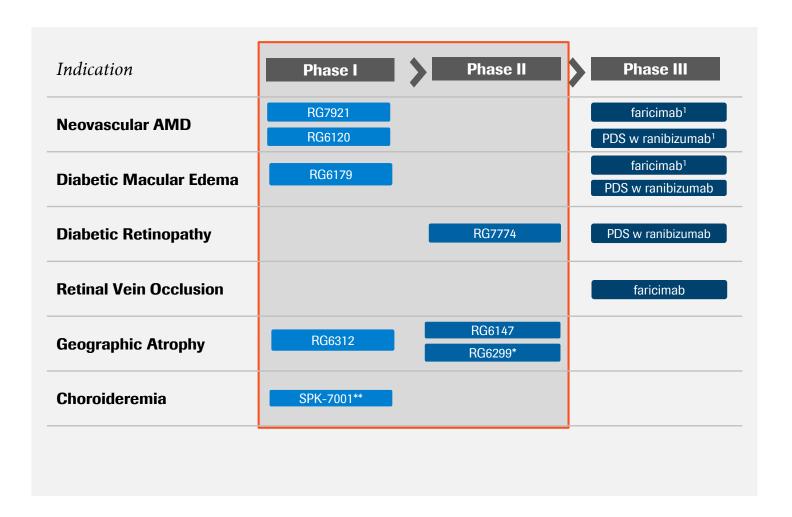
Preparing for a global launch in nAMD US launch planned for 2021, ex-US for 2022

Virtual reality training

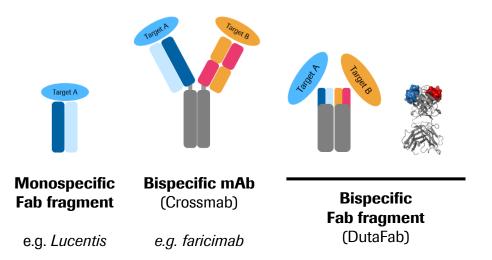
- Virtual reality (VR) technology enables preoperative training of surgeons on PDS procedures (implant insertion and refill)
- >200 US surgeons trained in Ph III across
 ~100 sites; ex-US VELODROME trial ongoing in 15+ countries

Field-based support

- Surgical Device Specialists (SDS) support training on site, and facilitate peer to peer discussion and education
- Focus on ensuring consistency in outcomes and enhancing the patient experience


Payer discussions ongoing

- · Currently engaging with payers
- Considerations for reimbursement: PDS device, implant procedure, drug, refill procedure


Industry leading ophthalmology pipeline Eight NMEs in early stage development (Ph 1/2)

Port Delivery System is a platform technology DutaFabs* are next generation bispecifics designed for increased efficacy & durability

Positive PDS Ph3 has enabled acceleration of DutaFabs in PDS platform

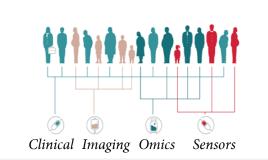
- DutaFabs are a novel bispecific Fab format significantly smaller than bispecific antibodies
- DutaFabs are compatible with the Port Delivery System enabling increased durability beyond Q6M
- Two DutaFabs are in clinical development with distinct targets, including Ang2/VEGF

^{*} Nature Communications, volume 12, Article number: 708 (2021); PDS = Port Delivery System

Ophthalmology Personalized Healthcare

Remote monitoring & advanced analytics to help treat vision loss early

Remote vision monitoring

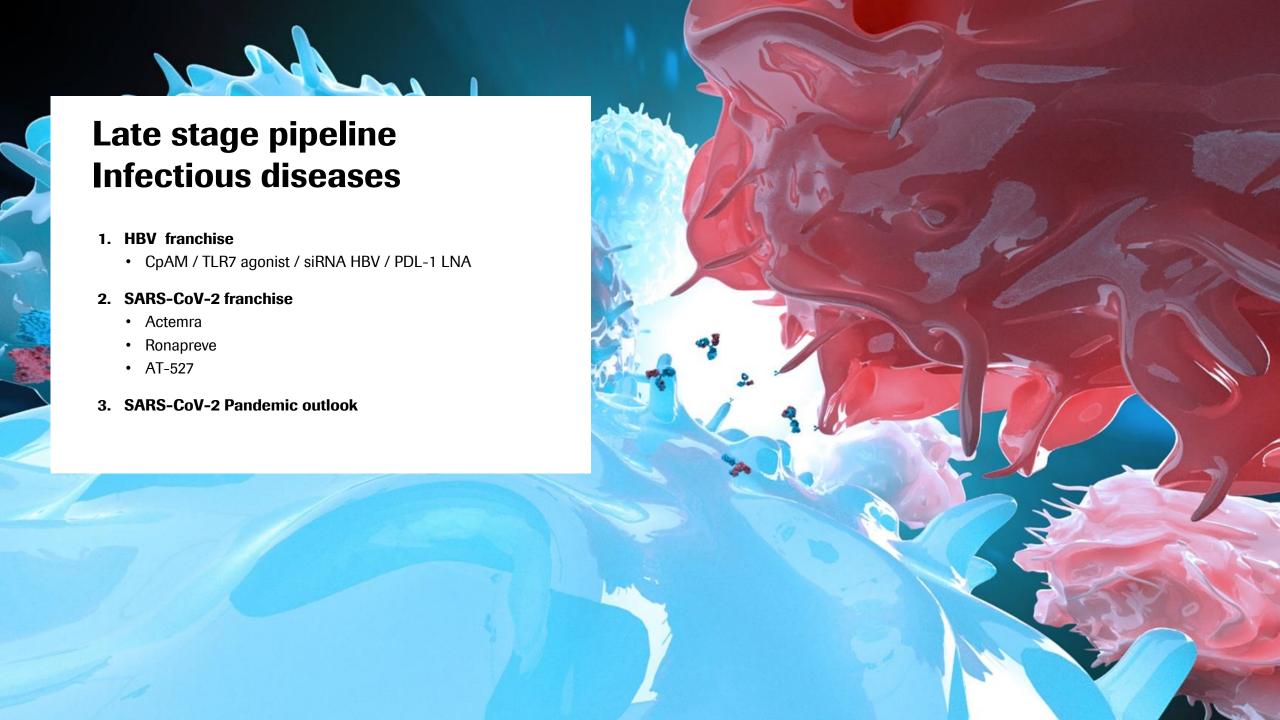

- App-based designed test to detect changes in vision in-between office visits
- Vision alerts sent to doctor
- Ongoing Home Vision Monitoring pilot to support patients during COVID-19

Retinal imaging and algorithms

 Demonstrated PoC utilizing internal algorithms in disease detection, prediction of progression and response to treatment

Data portfolio

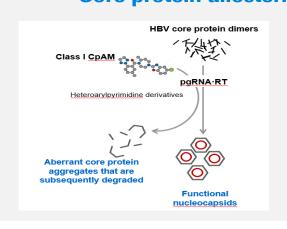
• RWD and data sharing partnerships:



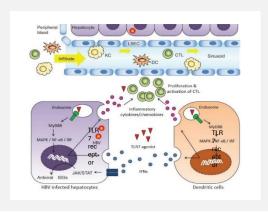
Roche Pharma Day 2021

Late Stage Pipeline Infectious Diseases

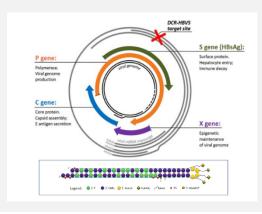
Barry Clinch Global Head of Infectious Diseases, Clinical development



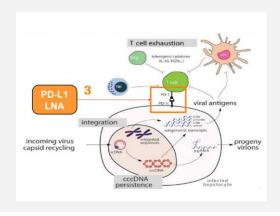
Hepatitis B virus: CpAM / TLR7 agonist / HBV siRNA / PDL-1 LNA 4 new MOAs in clinical development



Core protein allosteric modulator (CpAM)


- Effective against all major HBV genotypes
- Showing successful HBsAg reduction in mouse model

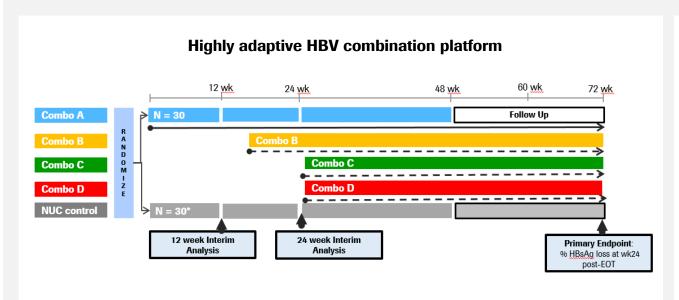
Toll like receptor 7 (TLR7) agonist


- TLR7 detects single-stranded viral RNA and mediates antiviral cytokine production and dendritic cell activation
- Unique double pro-drug selectively activated in the liver

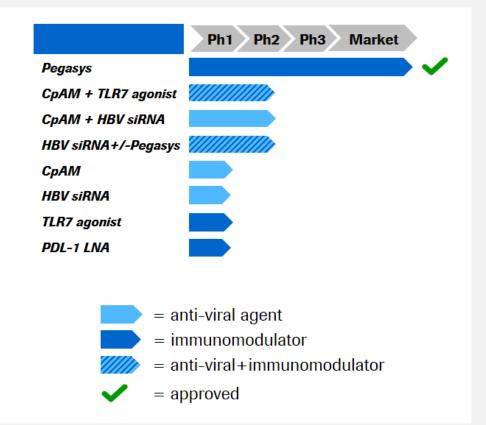
siRNA inhibiting multiple HBV genes

- Dicerna proprietary livertargeted RNAi technology (GalXC™) with unique 'tetraloop' folded design
- Designed to inhibit HBV gene expression by targeting of HBV genome S open reading frame

PDL-1 LNA

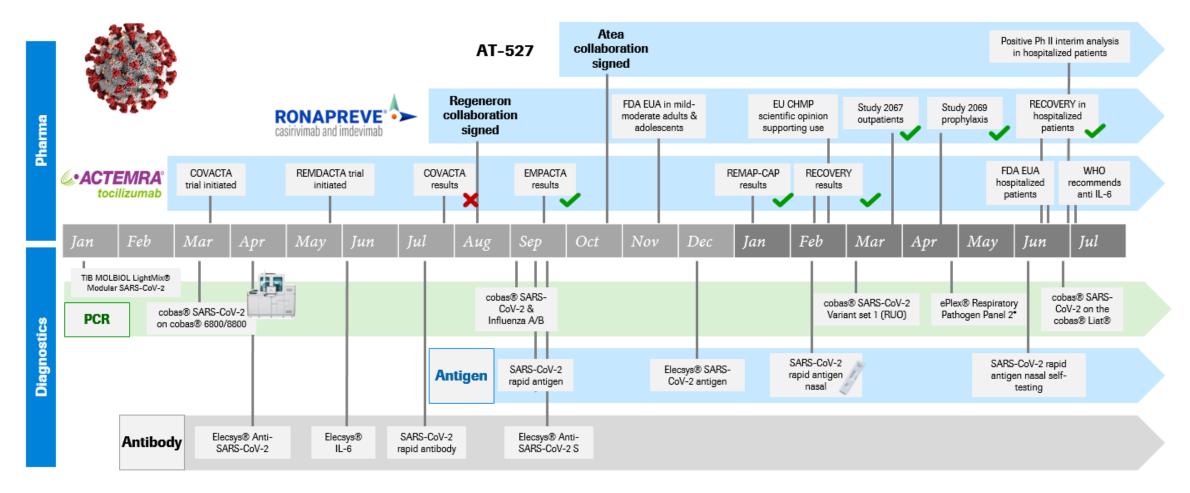


- Inhibition of the PD-L1/PD-1 interaction removes a T cell inhibitory signal
- Liver-directed locked nucleic acid oligonucleotide (RNA) targeting PDL-1 expression on hepatocytes to minimize systemic toxicity

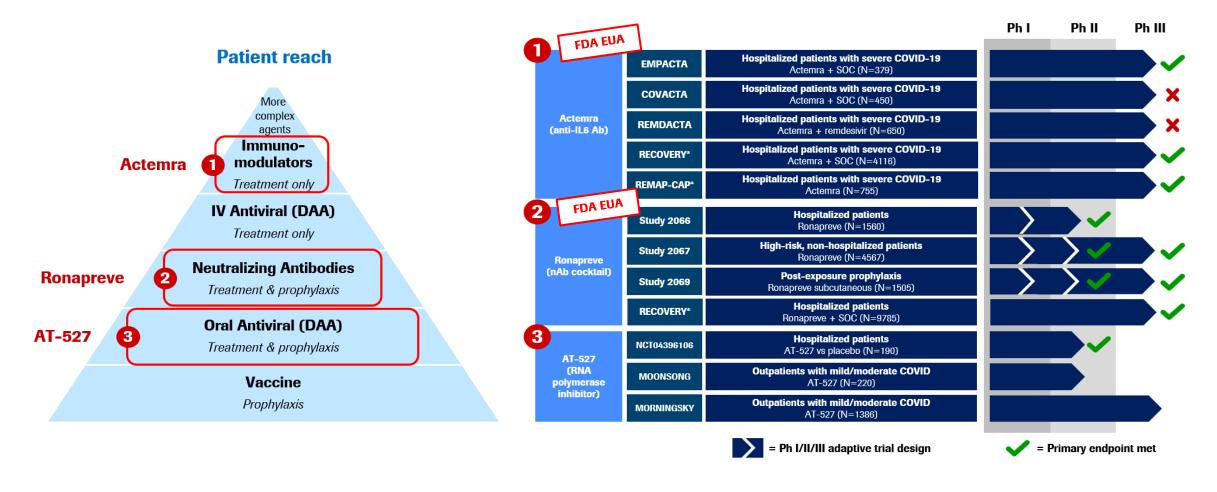

Hepatitis B virus: Combination platform initiated Multiple combinations now in Ph II testing

Screening drug combinations efficiently

- · Adaptive platform for Ph II study with shared control arm
- Designed to find the best combination therapy for HBV cure
- Opportunity to seamlessly add and terminate drug combinations

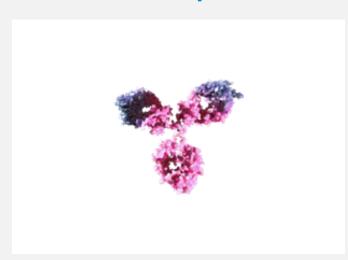

HBV development program progresses

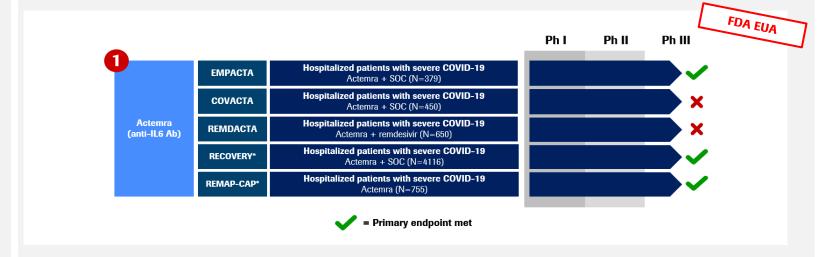
SARS-CoV-2: Our outstanding contribution battling the pandemic


> 1 million hospitalized patients received Roche's treatments

= positive Ph III results

SARS-CoV-2: Broad development program ongoingDifferent scientific approaches serving different pandemic needs

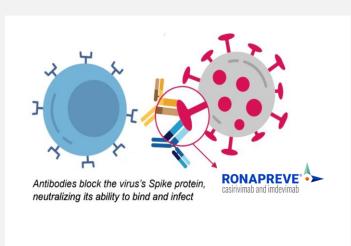


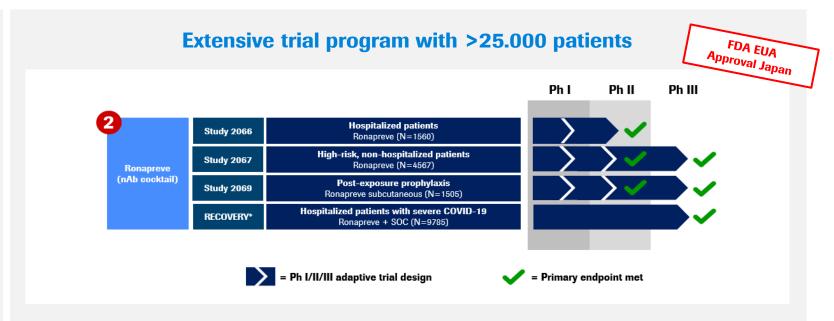

SARS-CoV-2: Actemra for severe COVID-19 associated pneumonia *WHO recommends IL-6 inhibitors for hospitalized patients*

Anti-IL6 receptor mAb

- Approved in RA, JIA, GCA and for CAR T-cell induced CRS
- As IL-6 plays an important role in SARS-CoV-2 infections and is considered a prognostic marker for disease severity, Roche initiated a Ph III program in hospitalized patients

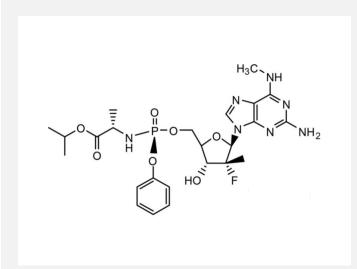
Totality of randomized Ph IIIs demonstrates efficacy in hospitalized patients


- Ph III (RECOVERY)* results showed that when Actemra is administered to hospitalized COVID-19 patients who received corticosteroids and require supplemental oxygen or breathing support the risk of death is reduced by 14% and enables faster recovery
- Based on a meta-analysis including Actemra in >8,000 hospitalized patients the WHO issued new treatment guidelines, recommending IL-6 inhibitors for severe COVID-19; the analysis showed Actemra to reduce mortality in hospitalized patients receiving corticosteroids

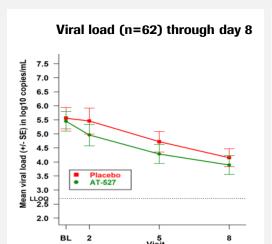

SARS-CoV-2: Ronapreve maintains activity against key variants Positive data in prophylaxis, non-hospitalized & hospitalized patients

Neutralizing Ab cocktail

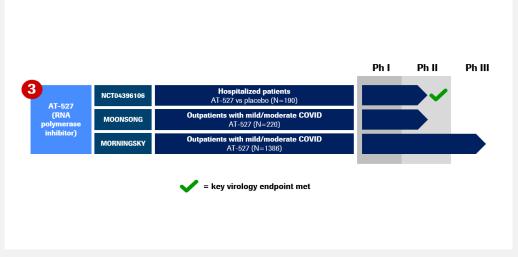
- Two potent, virus neutralizing Abs binding non-competitively to the critical receptor binding domain of the virus's spike protein¹
- Multiple simultaneous virus mutations needed to escape the nAb cocktail, which is an unlikely scenario^{2,3}


- Ph I-III (Study 2067) results show that Ronapreve reduces the risk of hospitalization or death by 70% for the low dose and by 71% for the high dose
- Ph I-III (Study 2069) results show that a low dose of 1,200 mg SC Ronapreve reduces the risk of symptomatic infections by 81% in those who were not infected when they entered the trial
- Ph III (RECOVERY)* results for Ronapreve show a 20% reduction in the risk of death for patients who do not mount their own antibody response against SARS-CoV-2

SARS-CoV-2: AT-527 for the outpatient setting *Ph II interim viral load results in hospitalized patients*



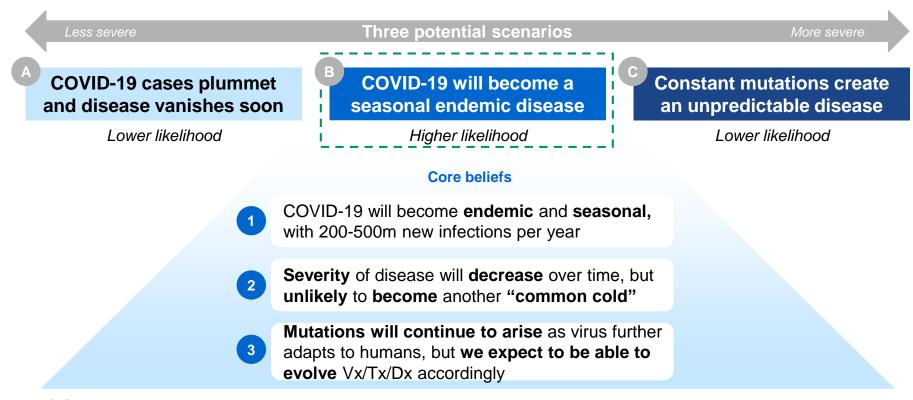
Purine nucleotide prodrug



- Oral, direct acting antiviral (DAA)
- Inhibits SARS-CoV-2 viral replication via a unique dual mechanism of action: Inhibits both NiRAN and RdRp, potentially creating a high barrier to resistance
- · Generally safe and well tolerated

Ph II interim results*

Ph III results expected end of 2021



- Ph II in mild/moderate hospitalized patients ongoing; interim results indicate antiviral activity:
 0.7log₁₀ reduction in viral titres at day 2; sustained viral reduction through day 8
- Ph II (MOONSONG) in outpatients evaluates alternative doses
- Ph III (MORNINGSKY) in outpatients achieved first-patient-in; results expected later in 2021

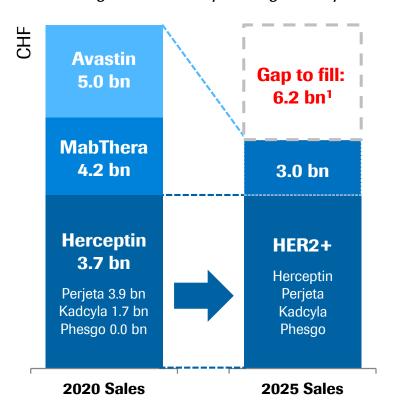
SARS-CoV-2: Pandemic outlook

Three scenarios how the pandemic might evolve in coming years

COVID-19 is here to stay, and there will still be a need for new treatments and diagnostics

Roche medicines against SARS-CoV-2 expected to be used by millions of patients in coming years

Doing now what patients need next



New product growth with strong momentum Considerable optionality

Biosimilar gap (20-25)

Sensitivity analysis:

Assuming conservative planning assumptions

Consensus sales growth (20-25)

Post-HY 2021	consensus	survey
--------------	-----------	--------

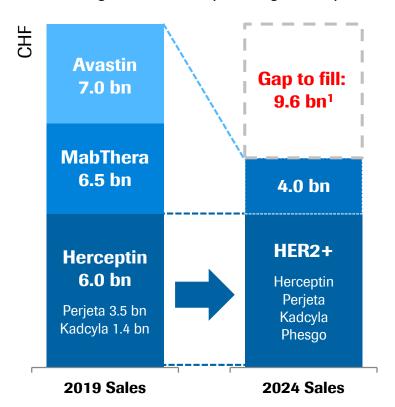
Total	18.1 br
Pipeline value ³	6.4 br
Other in-market ²	(2.3) br
Evrysdi	2.2 br
Enspryng	0.5 br
Polivy	1.0 br
Alecensa	0.5 br
Gazyva	0.7 br
Hemlibra	2.7 br
Tecentriq	3.8 br
Ocrevus	2.6 br

Up-side potential to consensus above are:

Oncology (Gavreto, inavolisib, KRAS G12C+), Ophthalmology (DutaFabs), Neuroscience (prasinezumab, fenebrutinib, SRP-9001), Immunology (rh-Pentraxin-2, etrolizumab in CD), Infectious diseases (Ronapreve, AT-527, chronic HBV)

¹ Gap value including the total HER2+ franchise change from 2020 to 2025; ² Xolair, Pulmozyme, CellCept, Activase/TNKase, Actemra, Lucentis, Erivedge, Esbriet, Cotellic, Xofluza, Rozlytrek;

³ crovalimab, mosunetuzumab, glofitamab, tiragolumab, gantenerumab, giredestrant, ipatasertib, PDS, faricimab



New product growth with strong momentum Considerable optionality

Biosimilar gap (19-24)

Sensitivity analysis:

Assuming <u>conservative</u> planning assumptions

Consensus sales growth (19-24)

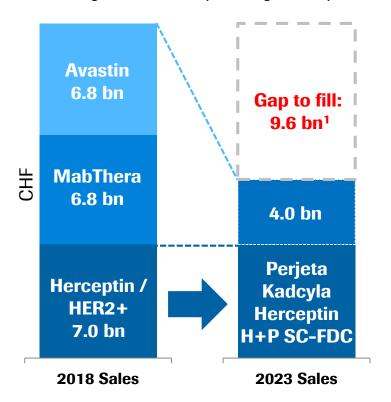
Total	17.7 bn
Pipeline value ³	3.4 bn
Other in-market ²	(0.3) bn
Evrysdi	1.4 bn
Enspryng	0.4 bn
Polivy	1.1 bn
Alecensa	0.8 bn
Gazyva	0.7 bn
Hemlibra	3.0 bn
Tecentriq	4.1 bn
Ocrevus	3.1 bn

Up-side potential to consensus above are:

Oncology (Gavreto, mosunetuzumab, Pl3Kai, SERD),
Ophthalmology (PDS), Neuroscience (gantenerumab,
prasinezumab, SRP-9001), Immunology (Gazyva in lupus,
rhPentraxin-2, crovalimab, etrolizumab in CD), Infectious
diseases (REGN-COV2, chronic HBV)

¹ Gap value including the total HER2+ franchise change from 2019 to 2024; ² Xolair, Pulmozyme, CellCept, Activase/TNKase, Actemra, Lucentis, Erivedge, Esbriet, Cotellic, Xofluza, Rozlytrek;

³ glofitamab, tiragolumab, ipatasertib, faricimab, tominersen



New product growth with strong momentum Considerable optionality

Biosimilar gap (18-23)

Sensitivity analysis:

Assuming <u>conservative</u> planning assumptions

Consensus sales growth (18-23)

Total	16.3 bn
Pipeline value ³	2.9 bn
In-market & mature ²	(0.9) bn
Rozlytrek	0.4 bn
Polivy	0.9 bn
Xofluza	0.5 bn
Alecensa	0.9 bn
Gazyva	0.8 bn
Hemlibra	3.5 bn
Tecentriq	3.5 bn
Ocrevus	3.8 bn

Up-side potential to consensus above are:

Oncology (Venclexta, mosunetuzumab/ CD20xCD3, Pl3Ka, SERD) Autism (balovaptan), Alzheimer's (gantenerumab), Ophthalmology (port delivery system), Immunology (Gazyva in lupus), Infectious diseases (chronic hepatitis B)

¹ Gap value including the total HER2 franchise change from 2017 to 2023, assuming Lucentis will be replaced by faricimab; ² Esbriet, Tarceva, Xolair, Pulmozyme, Rocephin, CellCept, Mircera, NeoRecormon/Epogin, Activase/TNKase, Xeloda, Valcyte/Cymevene, Actemra/RoActemra, Tamiflu, Madopar, Pegasys; ³ satralizumab, idasanutlin, ipatasertib, risdiplam, HTT-ASO