

Roche Analyst Event *Tuesday, 08 June 2021*

This presentation contains certain forward-looking statements. These forward-looking statements may be identified by words such as 'believes', 'expects', 'anticipates', 'projects', 'intends', 'should', 'seeks', 'estimates', 'future' or similar expressions or by discussion of, among other things, strategy, goals, plans or intentions. Various factors may cause actual results to differ materially in the future from those reflected in forward-looking statements contained in this presentation, among others:

- 1 pricing and product initiatives of competitors;
- 2 legislative and regulatory developments and economic conditions;
- 3 delay or inability in obtaining regulatory approvals or bringing products to market;
- 4 fluctuations in currency exchange rates and general financial market conditions;
- 5 uncertainties in the discovery, development or marketing of new products or new uses of existing products, including without limitation negative results of clinical trials or research projects, unexpected side-effects of pipeline or marketed products;
- 6 increased government pricing pressures;
- 7 interruptions in production;
- 8 loss of or inability to obtain adequate protection for intellectual property rights;
- 9 litigation;
- 10 loss of key executives or other employees; and
- 11 adverse publicity and news coverage.

Any statements regarding earnings per share growth is not a profit forecast and should not be interpreted to mean that Roche's earnings or earnings per share for this year or any subsequent period will necessarily match or exceed the historical published earnings or earnings per share of Roche.

For marketed products discussed in this presentation, please see full prescribing information on our website www.roche.com

All mentioned trademarks are legally protected.

Welcome

Karl Mahler, Head of Investor Relations and Group Business Planning

Early pipeline programs in focus

William Pao, M.D., Ph.D., Head of Roche Pharma Research and Early Development Ira Mellman, Ph.D., Vice President, Cancer Immunology, Genentech Research & Early Development

Late-stage pipeline programs in focus

Levi Garraway, M.D., Ph.D., Chief Medical Officer and Head of Global Product Development

ASCO 2021 Highlight

Tecentriq in adjuvant NSCLC: Phase 3 IMpower010 primary results

Heather Wakelee, M.D., Prof. of Medicine, Stanford Univ Medical Center / Deputy Director Stanford Cancer Institute

Q&A

Karl Mahler | Head of Investor Relations and Group Business Planning

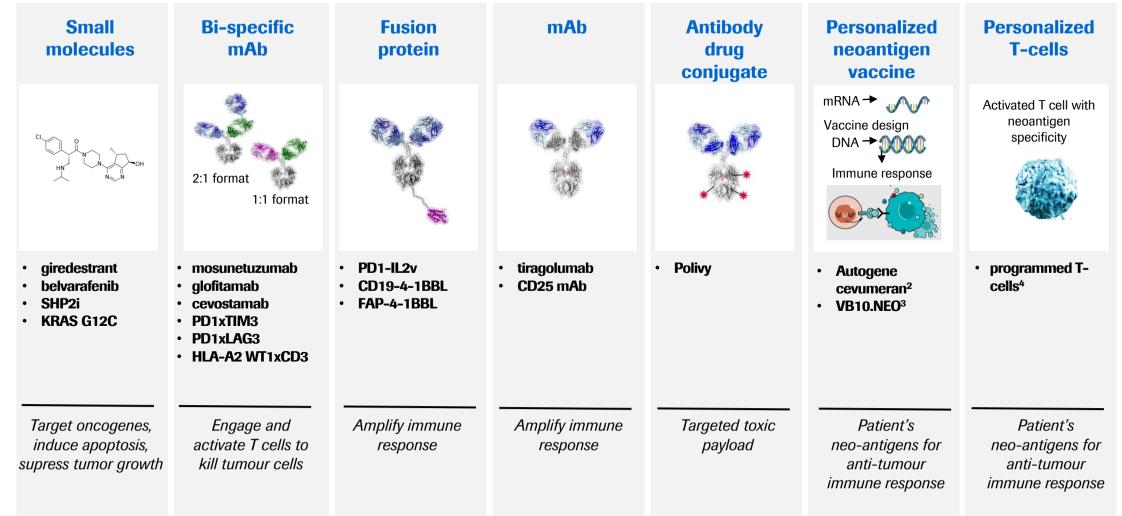
Reflecting the quality of research and development at Roche

37

Breakthrough Therapy Designations (BTD) since 2013

Year	Molecule	Indication
2020	tiragolumab +Tcq	1L PD-L1+ NSCLC
	mosunetuzumab	3L+ FL
	Tecentriq	unresectable or metastatic ASPS
	Esbriet	ulLD
2019	Gavreto	RET fusion-positive NSCLC
	Gavreto	RET mutation-positive MTC
	Cotellic	Histiocytic neoplasms
	Gazyva	Lupus nephritis
	rhPentraxin-2	IPF
	Venclexta + Gazyva	1L unfit CLL
	Kadcyla	Adjuvant HER2+ BC
2018	SPK-8011	Hemophilia A
	Enspryng	NMOSD
	Xolair	Food allergies
	Tecentriq + Avastin	1L HCC
	Hemlibra	Hemophilia A non-inhibitors
	Rozlytrek	NTRK+ solid tumors
2017	Polivy + BR	R/R DLBCL
	Venclexta + LDAC	1L unfit AML
	Zelboraf	BRAF-mutated ECD
	Rituxan	Pemphigus vulgaris

Approvals under Real-Time Oncology review (RTOR) since start of the first pilot program in 2018


Year	Molecule	Indication
2020	Gavreto	RET fusion-positive NSCLC
2020	Tecentriq + Avastin	1L HCC
0010	Venclexta + Gazyva	1L unfit CLL
2019	Kadcyla	Adjuvant HER2+ BC

NEW application under **RTOR**

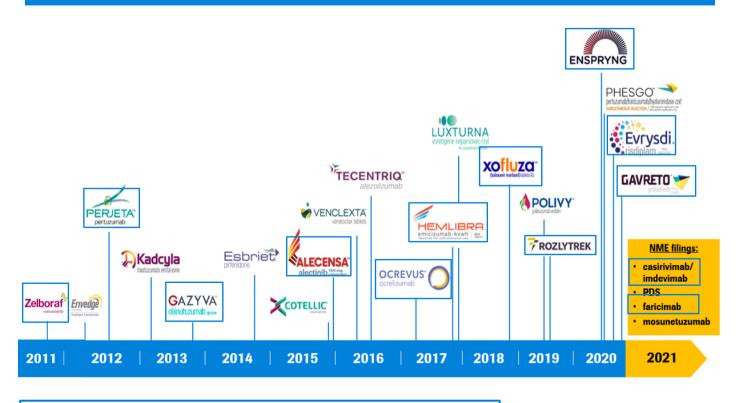
Tecentriq in adjuvant NSCLC Phase 3 IMpower010 interim analysis data

Our technology platforms in oncology *Roche pipeline includes differentiated therapeutic platforms*

Examples listed are highlighted during today's presentation

In collaboration with ¹Hanmi ²Biontech; ³Vaccibody; ⁴Adaptive, ⁵SQZ Biotechnology

Early pipeline programs in focus


William Pao, M.D., Ph.D. | Head Roche Pharma Research & Early Development (pRED)

Roche pRED's contributions to launching new medicines *Science and innovation have been keys to success*

Molecules under full development

- glofitamab NHL
- cibisatamab MSS CRC
- gantenerumab AD
- tominersen HD
- crovalimab* PNH
- SRP9001 DMD
- **AT-527** COVID-19

Roche pRED supported development; *in collaboration with Chugai

pRED oncology focus areas

Covering a range of modalities in line with state of the art cancer biology

'Game Changing' Innovation

 New targets, technologies, collaborations and partnerships

CIT SM

Molecular Targeted Therapy (MTT) – small molecules

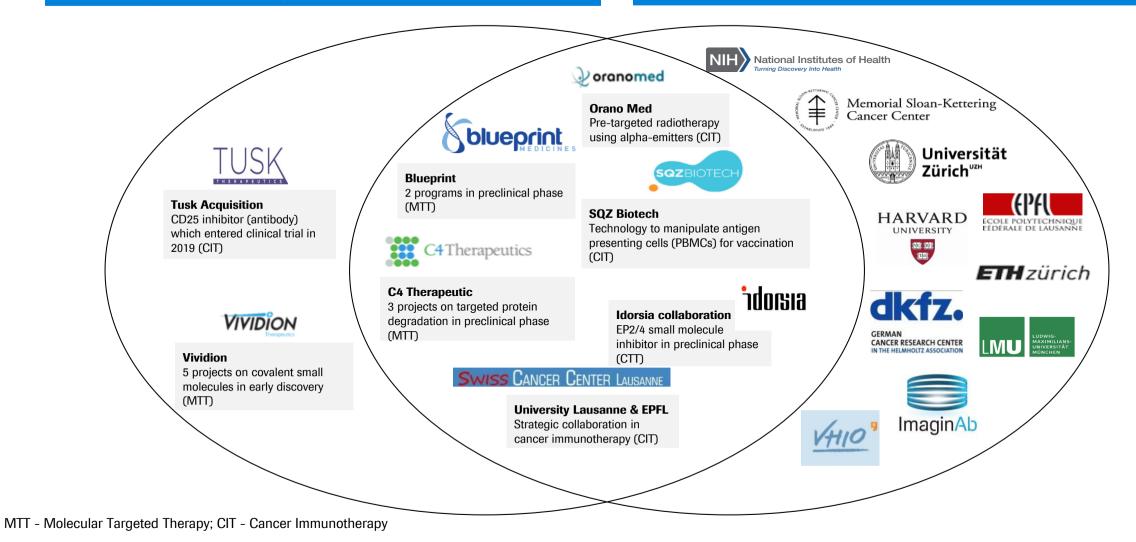
- Cancer signaling
- Targeted protein degradation

Cancer immunotherapy small molecules

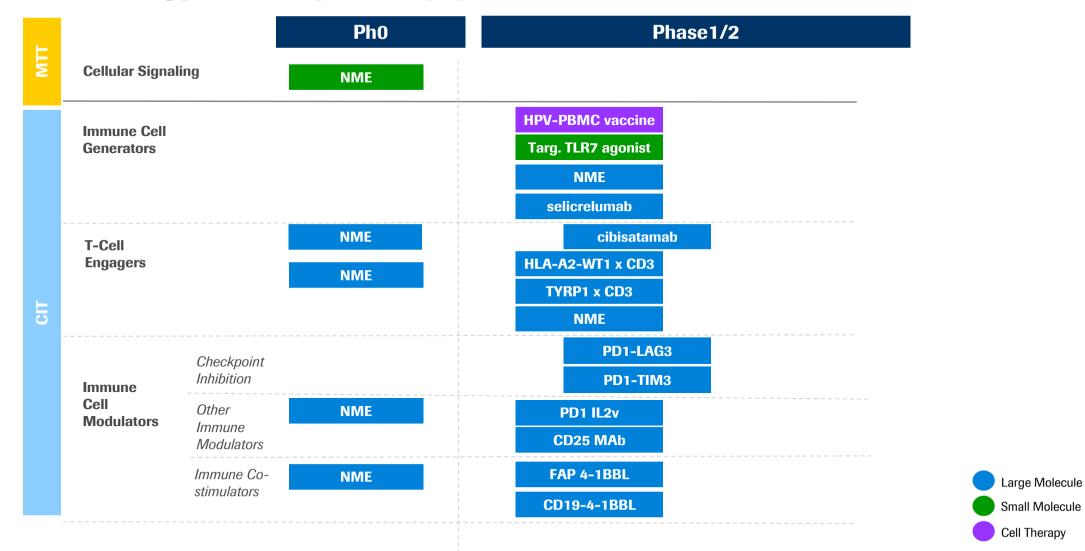
Modulators of T-cell activity & innate immunity

Cancer Immunotherapy large molecules

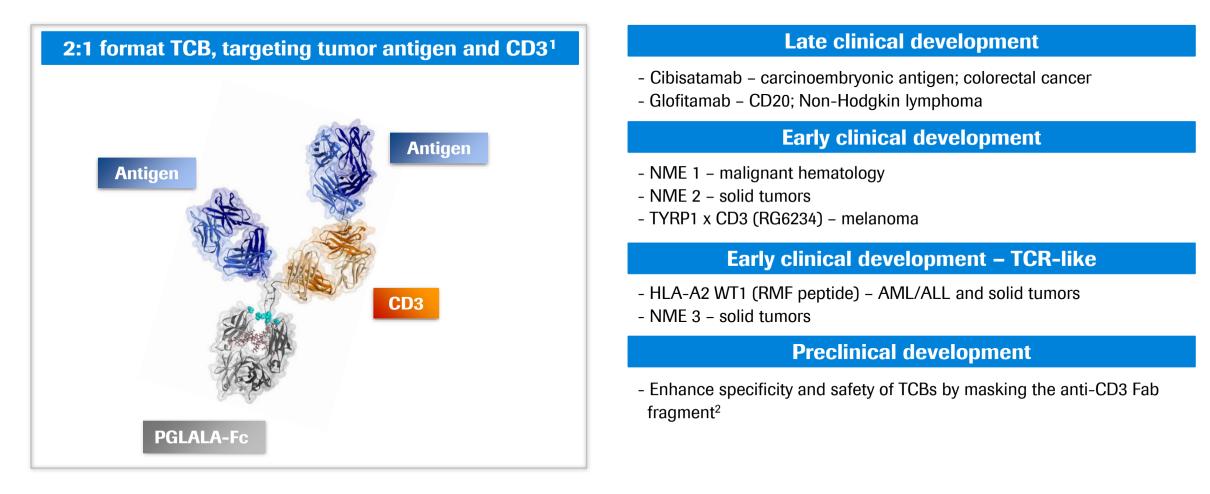
- Direct T-cell engagers
- · Generators of tumor selective immune cells
- Modulators of T-cell activity & innate immunity


Harnessing external innovation: 2018-2021

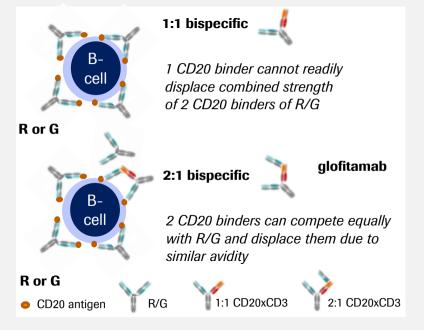
10


In-licensing projects of high scientific quality and strategic fit

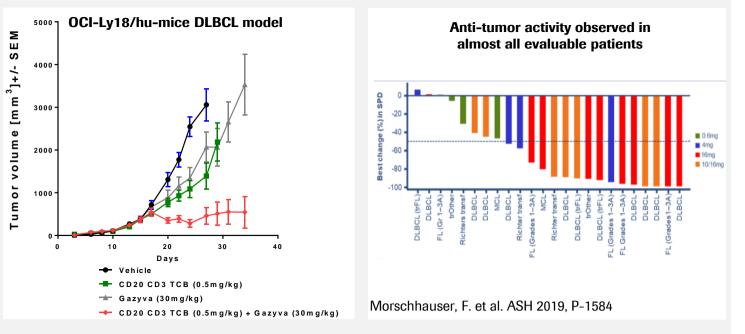
Multiple strategic partnerships with biotech and academia

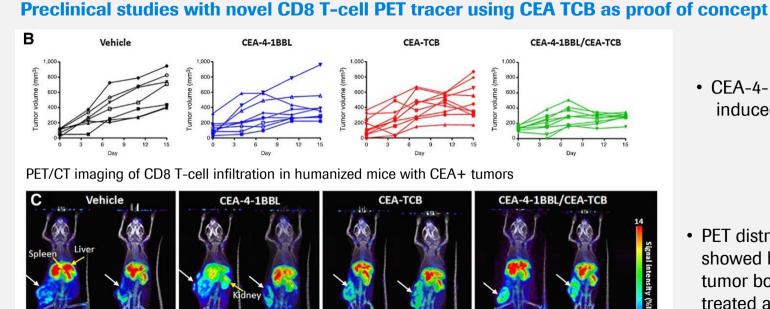


pRED Oncology development pipeline



T-cell Bispecifics in early clinical development: Redirect T-cell attack Content Utilizing novel 2:1 format for maximal efficacy

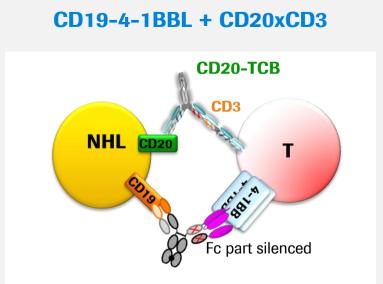

Glofitamab: Flexibility to combine with anti-CD20 mAbs


- Bivalent binding of glofitamab on B-cell allows equal competition with bivalent aCD20s due to similar functional affinity for CD20
- CD20 B-cell occupancy by CD20 x CD3 only 2% for maximum efficacy

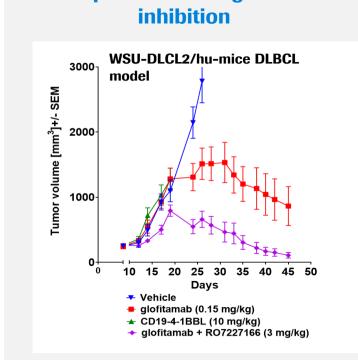
Glofitamab + Gazyva: strong efficacy demonstrated in preclinical and clinical studies

- Dual CD20-targeted therapy with concurrent glofitamab and Gazyva shows promising clinical activity and manageable safety in relapsed or refractory B-cell NHL in Ph Ib
- Comprehensive clinical development program in NHL as single-agent and in combinations

Assessing the potential of rapid non-invasive whole-body monitoring of patients with r/r NHL treated with glofitamab*

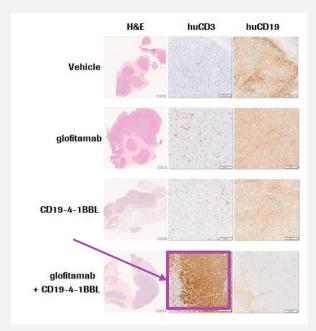

Griessinger et al., Cancer Res 2020;80:2903-13

 CEA-4-1BBL/CEA-TCB combination induced the strongest tumor regression

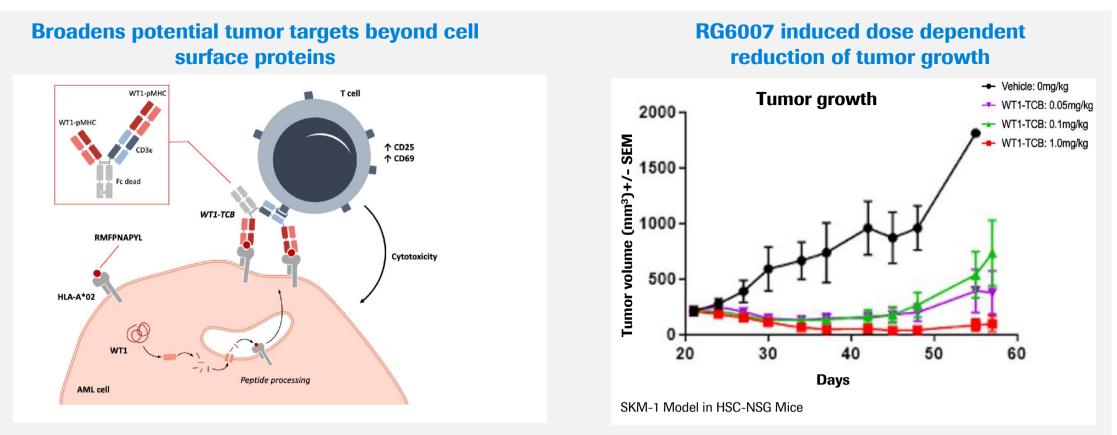

- PET distribution images 40 h post-injection showed homogenous signals throughout tumor borders and tumor center in CEA-TCBtreated and CEA-4-1BBL/CEA-TCB combo groups, respectively
- High sensitivity of 89Zr-Df-IAB22M2C tracer for the detection of intra-tumoral CD8+ T-cell infiltrates as promising monitoring tool for patients' early response to cancer immunotherapy
- *FPI in sub-study of ongoing PhIb to assess potential of rapid non-invasive whole-body monitoring of patients with r/r NHL treated with glofitamab May 2021

Roch

Glofitamab in combination with CD19-4-1BBL (RG6076) *Potential for off-the-shelf alternative to 2nd generation CD19-CAR-T-cell*



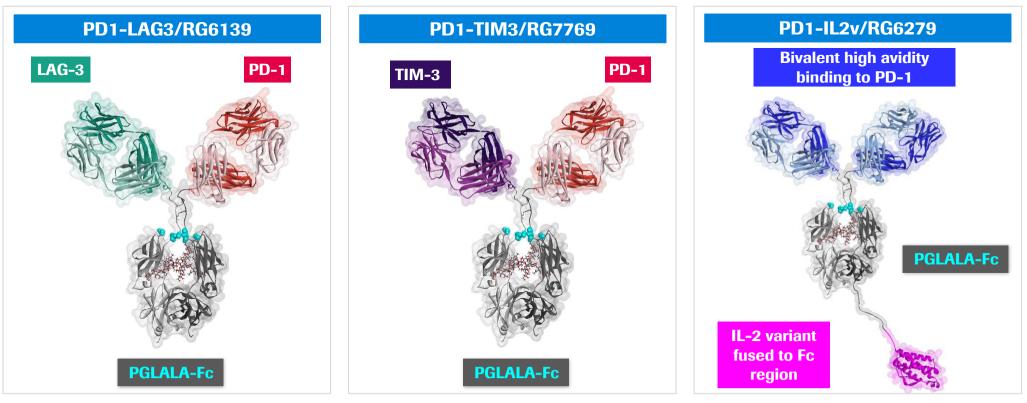
- Signal 1: NK or T-cell activation delivered by glofitamab
- Signal 2: CD19-4-1BBL leads to enhanced NK and T-cell activation and promotes a durable immune response


Improved tumor growth

Significantly enhanced T-cell infiltration

- CD19-4-1BBL enhances *in vivo* effector function of T or NK cells in the presence of CD19+ tumor targets in combination with glofitamab as well as obinutuzumab
- Ph I of CD19-4-1BBL in combination with glofitamab in r/r NHL ongoing

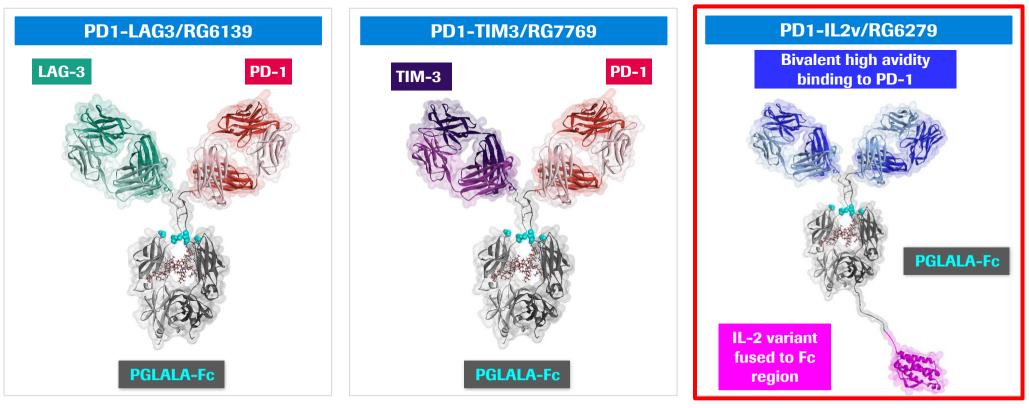
HLA-A2 WT1 x CD3 (RG6007) targeting intracellular oncoprotein WT1 (Roche) TCR receptor-like T-cell bispecific for heme and solid tumors



- Targets intracellular proteins via peptide MHC complexes (pMHC) and CD3 T-cells
- High specificity for tumor cells sparing healthy cells
- Potential for development in hematology and solid tumors, Ph I single agent dose escalation of RG6007 in AML ongoing

PD1 mAbs in early clinical development

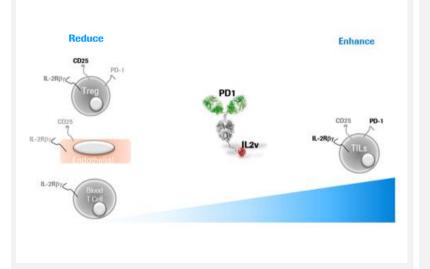
Enhancing activity of standard of care checkpoint inhibitors



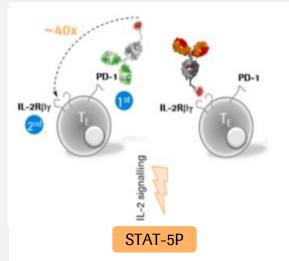
- Ph 1 dose expansion cohorts in solid tumors ongoing
- Randomized Ph 2 start vs anti-PD1 exp. 2021
- Ph 1 dose expansion cohorts in solid tumors ongoing
- Randomized Ph 2 start vs anti-PD1 exp. 2021
- Ph 1 dose escalation cohorts in solid tumors ongoing, data presented at AACR 2021

PD1 mAbs in early clinical development

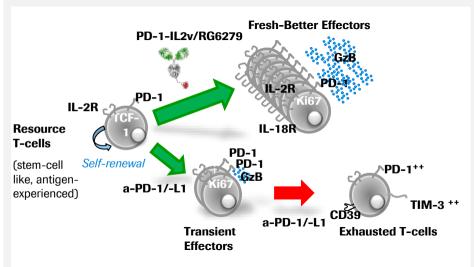
Enhancing activity of standard of care checkpoint inhibitors



- Ph 1 dose expansion cohorts in solid tumors ongoing
- Randomized Ph 2 start vs anti-PD1 exp. 2021
- Ph 1 dose expansion cohorts in solid tumors ongoing
- Randomized Ph 2 start vs anti-PD1 exp. 2021
- Ph 1 dose escalation cohorts in solid tumors ongoing, data presented at AACR 2021


PD1-IL2v (RG6279): Delivering IL2 variant to PD-1+ T-cells

IL2v preferentially activates effector T cells

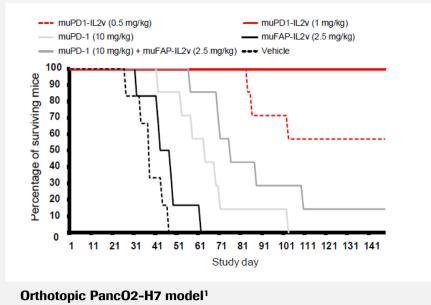


IL2v delivery to PD-1+ T cells

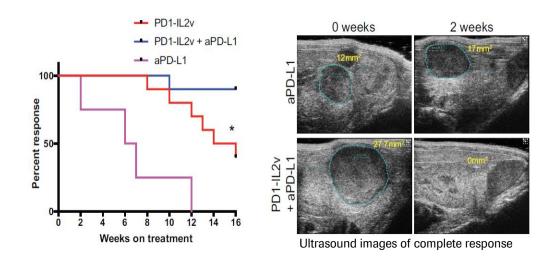
- IL2v engineered to eliminate binding to IL-2Rα (CD25), inducing only IL-2Rβγ agonism, thereby avoiding binding on endothelial cells and preferential expansion of Tregs
- PD1-targeting increases IL2v potency towards PD-1+ cells

Superior approach to exploit tumor-specific T-cells vs. CPI alone

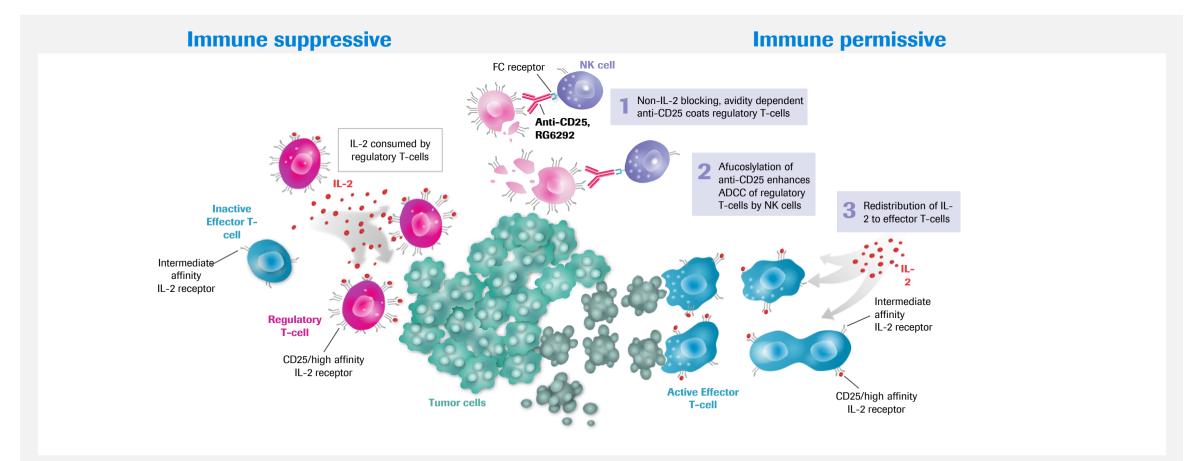
Collaboration with R. Ahmed & M. Hashimoto, Emory University, Atlanta


 PD1-IL2v treatment leads to greater expansion of proliferative and cytotoxic effector cells compared to non-PD-1-targeted IL2v and anti-PD-1

CPI - Check point inhibition


Encouraging preclinical activity of cis-targeted PD1-IL2v (RG6279)

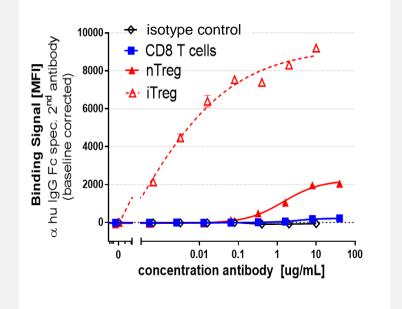
PD1-IL2v: Enhanced efficacy in combination with aPD-L1



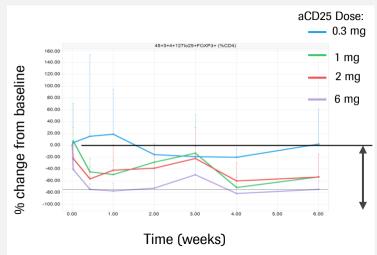
in RT5 model; collaboration with D. Hanahan, SLCC²

• Ph1 dose escalation with RG6279 in solid tumors ongoing (NCT04303858)

Anti-CD25 (RG6292) Selective regulatory T-cell depletion without affecting IL-2 signaling

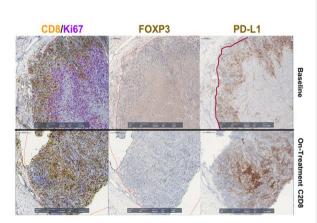


• RG6292-mediated Treg depletion leads to redistribution of IL-2 to effector T-cells



Anti-CD25 (RG6292) Selective regulatory T-cell depletion without affecting IL-2 signaling

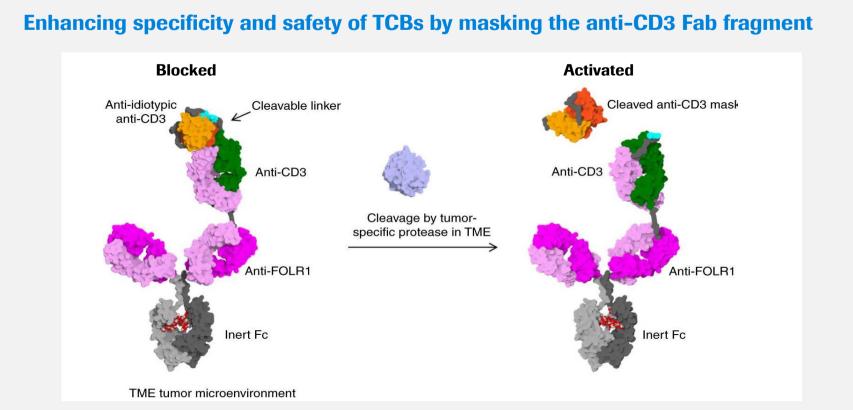
Preferential binding of RG6292 to iTregs *in vitro*



RG6292 induces dose dependent blood Treg depletion in patients

Consistent trend of Treg depletion observed from 2mg cohort onwards with > 75% Treg depletion from baseline

RG6292 induced an inflamed tumor type in patients



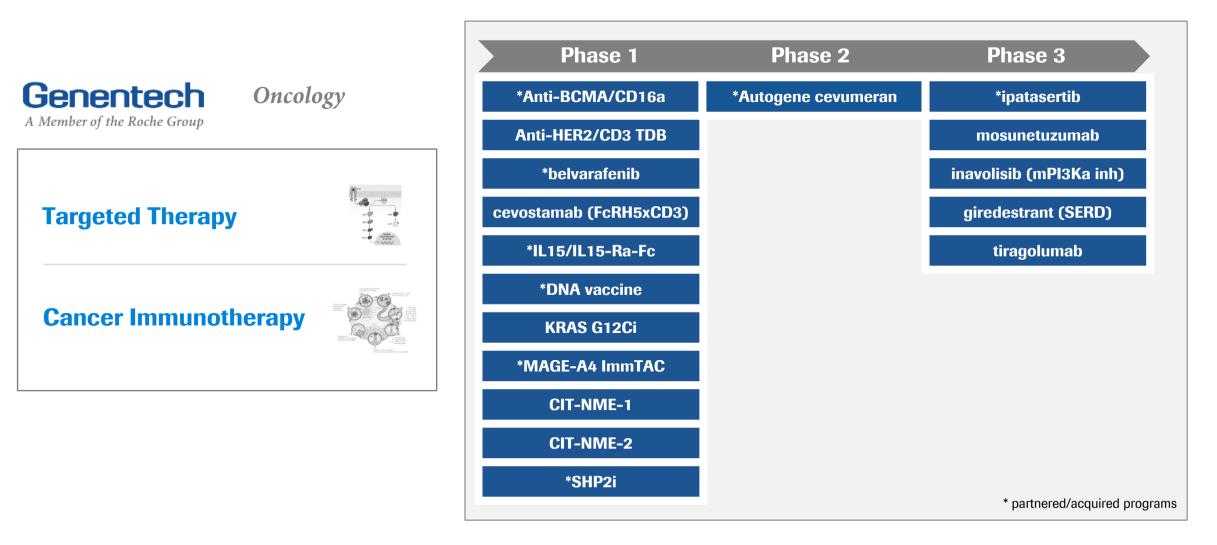
Melanoma, CPI experienced, dosed at 6mg

Immune cell relocation and conversion of tumors to a CD8 inflamed phenotype

- Preliminary single agent dose escalation data indicate good tolerability with manageable skin toxicity being the most frequent AE
- PhI dose escalation as single agent (NCT04158583) and in combination with Tecentriq (NCT04642365) in solid tumors ongoing

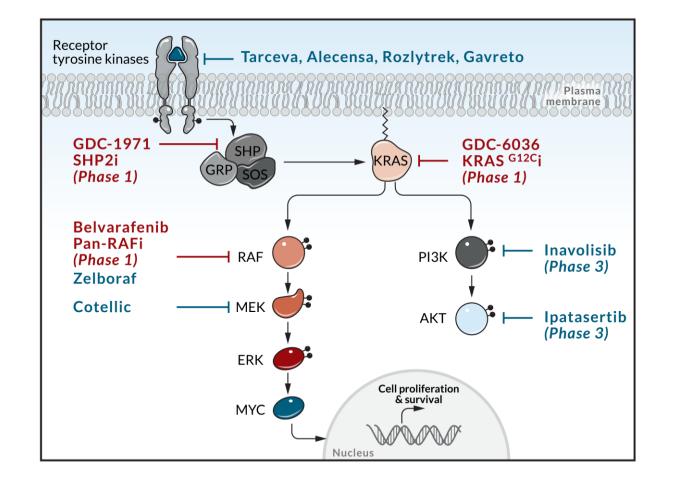
Increasing the therapeutic index of T-cell Bispecifics via novel protein engineering

 Protease-activation using anti-idiotypic masks enables tumor specificity of a T-cell bispecific allowing for optimized on-target activity while minimizing off-tumor activity¹

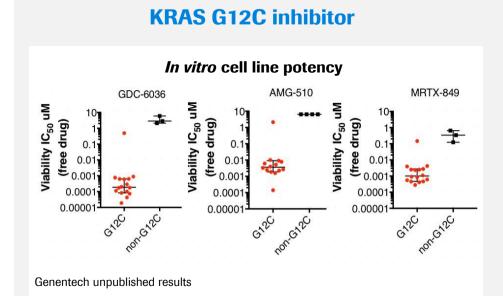


Early pipeline programs in focus

Ira Mellman, Ph.D. Vice President, Cancer Immunology, Genentech Research & Early Development (gRED)

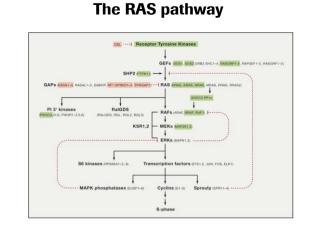

Robust gRED oncology portfolio

Ras-MAPK pathway in cancer



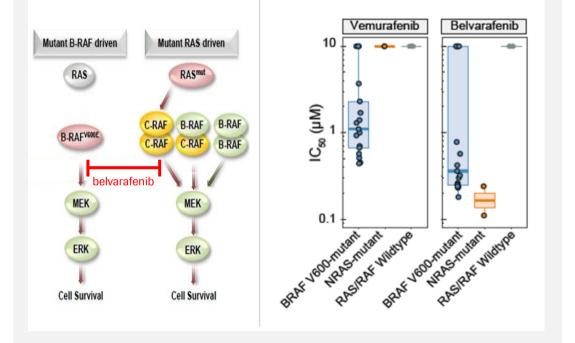
Due to pathway cross-talk and feedback mechanisms, combination strategies are required for optimal clinical effectiveness and to tackle resistance

gRED portfolio


Late stage portfolio / marketed

GDC-6036 (KRAS G12C inhibitor) in solid tumors *G12C driver mutations found in 12% of all NSCLC patients*

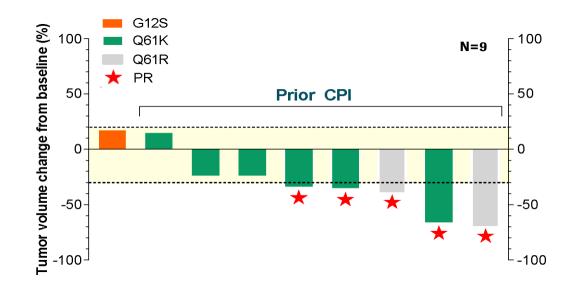
- Highly potent irreversible covalent inhibitor of the KRAS G12C mutant protein, which becomes locked in an inactive state
- Minimal safety findings leading to wide nonclinical safety margins
- Ph I dose escalation and expansion in KRAS G12C+ solid tumors started in Q2 2020


High unmet need remains in KRAS G12c mutant tumors

Simanshu, Cell, 2017

- GDC-6036 as a key combination partner for our portfolio, both targeted and immunotherapeutics
- RAS pathway activation can promote resistance to immunotherapy by reducing expression of MHC class I and tumor neoantigen presentation
- Cancer immunotherapy established as standard of care in 1L NSCLC, but inhibition of KRAS G12C is expected to deepen activity and extend durability

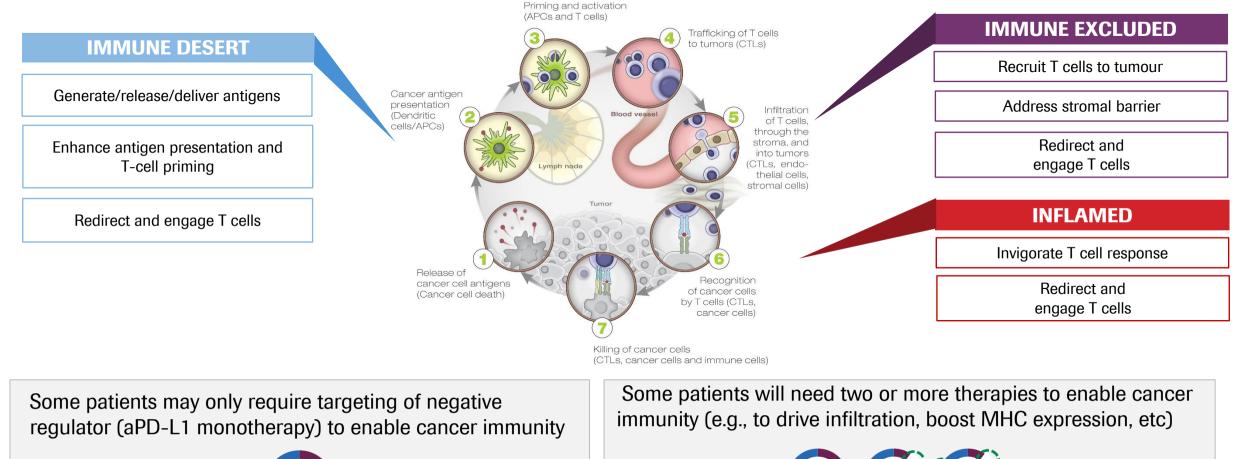
Belvarafenib is a potent and selective RAF dimer inhibitor



Selective inhibition of mutant RAF dimers

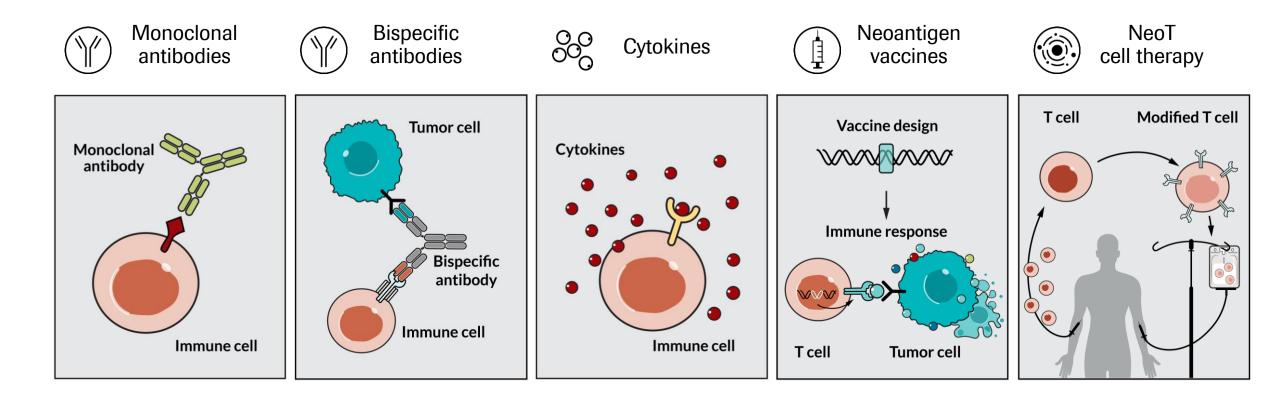
- Inhibition of RAF dimers, including downstream of RAS signaling (e.g. NRAS)
- Exceptional CNS penetration in preclinical studies

Promising efficacy in CPI-experienced NRAS melanoma


Belvarafenib + Cobimetinib: Ph 1b expansion in NRAS melanoma*

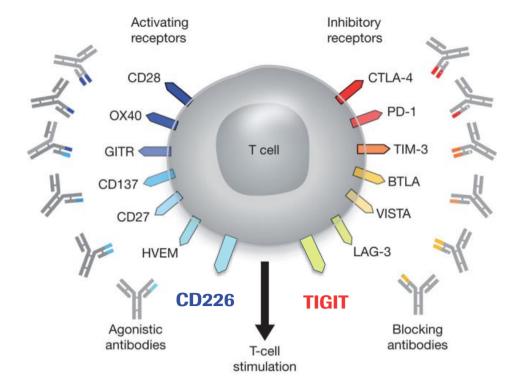
- Responses in 5/13 patients (38.5%) including in 5/11 patients with prior CPI (45.5%)*
- Belvarafenib + cobimetinib showed acceptable tolerability
- Further studies ongoing in NRAS melanoma (~25% of melanoma pts)

Strategies to promote an antitumor immune response by phenotype *Target "rate limiting steps" associated with primary and secondary resistance*

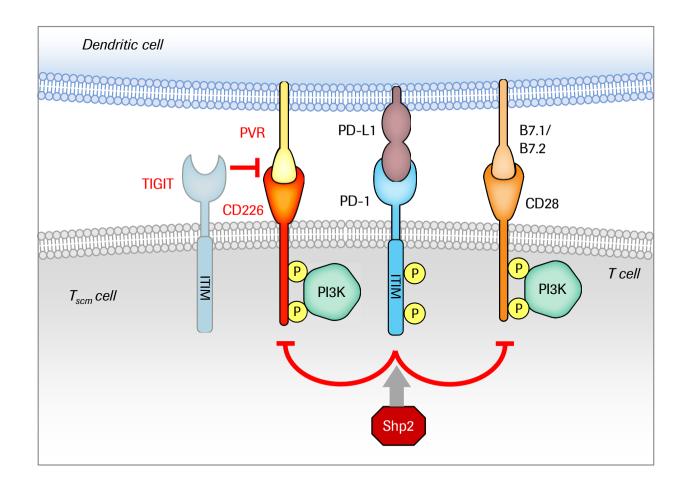


Adapted from Chen and Mellman. Immunity 2013; Hegde, et al. Clin Cancer Res 2016; Kim and Chen. Ann Oncol 2016; Chen and Mellman. Nature 2017

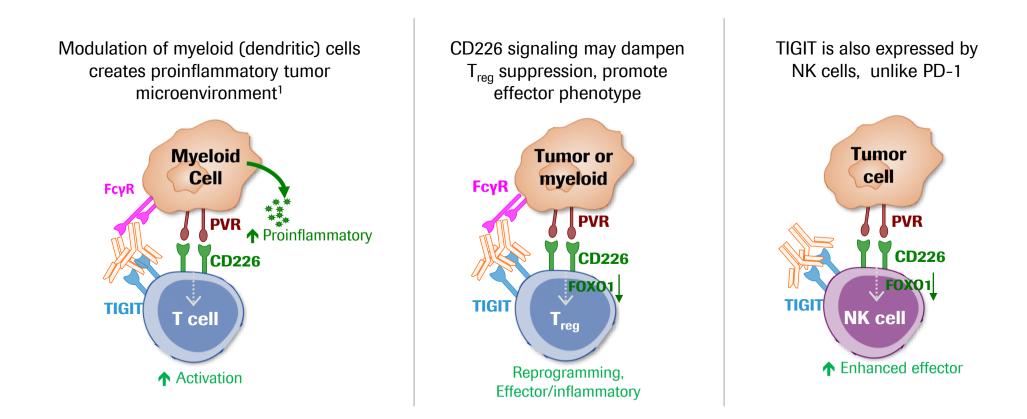
Roch


Multiple modalities and approaches to leverage T cell immunotherapy

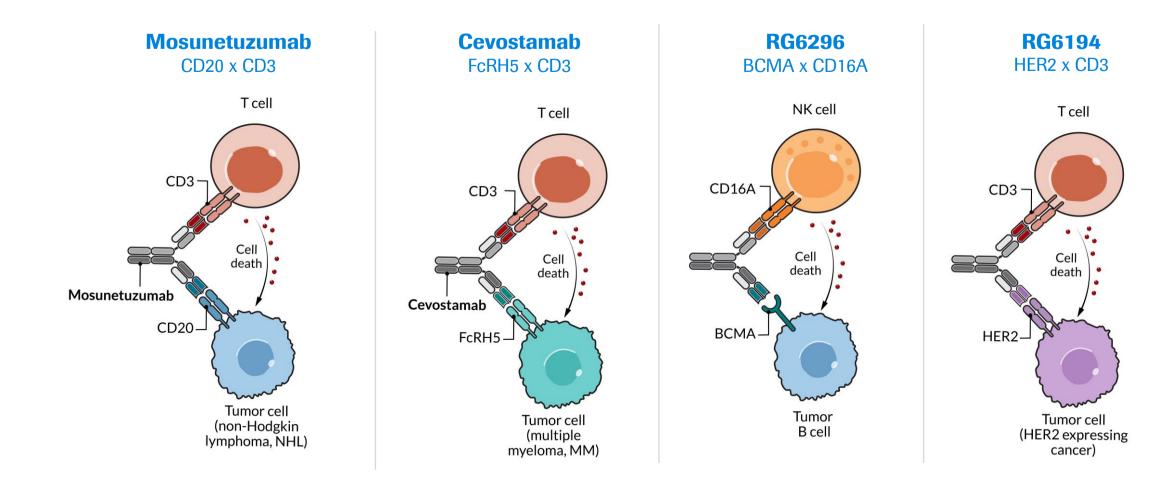
There are many T cell checkpoints to combine with PD-1/L1 blockade, why choose TIGIT?


TIGIT is an inhibitory receptor discovered at Genentech

- First checkpoint inhibitor to yield positive randomized data in NSCLC in combination with PD-1/L1
- Only negative regulator besides PD-1 expressed by T_{scm} cells, a key target of aPD-1/L1
- Convergence with PD-1-mediated regulation of CD226 and CD28 costimulation
- Possible antibody-mediated modulation of dendritic cells, T_{reas}, & NK cells

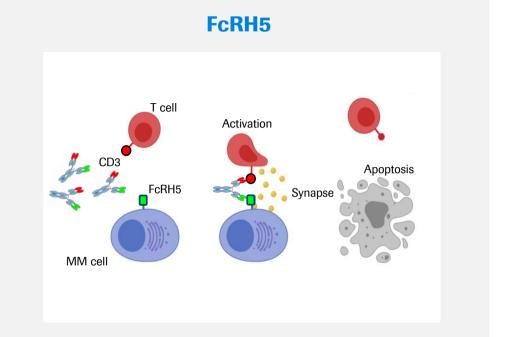

The convergence of the TIGIT and PD-1 pathways: *CD226 and CD28 are both "clients" of PD-1*

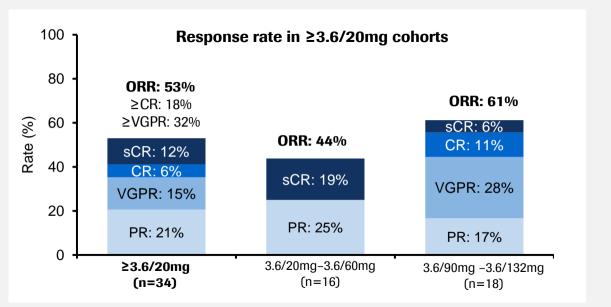
- TIGIT competes with CD226 for ligand binding
- PD-1 mediates dephosphorylation of both CD28 and CD226
- Optimal activation of costimulation requires coordinated inhibition of both TIGIT and PD-1
- TIGIT and PD-1 expressed on a likely target cell for PD-(L)1 therapy: T stem cell memory cells


TIGIT activity may also reflect modulation of myeloid cells, CD226 suppression of T_{reqs} , NK cell activation

Anti-TIGIT Fc:FcyR interaction may sequester TIGIT away from the synapse, and play a role in reprogramming of myeloid cells

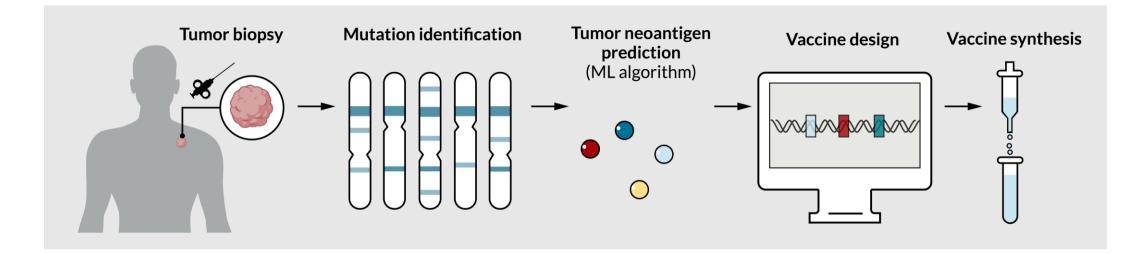
gRED bispecific antibody portfolio




Cevostamab (FcRH5 x CD3)

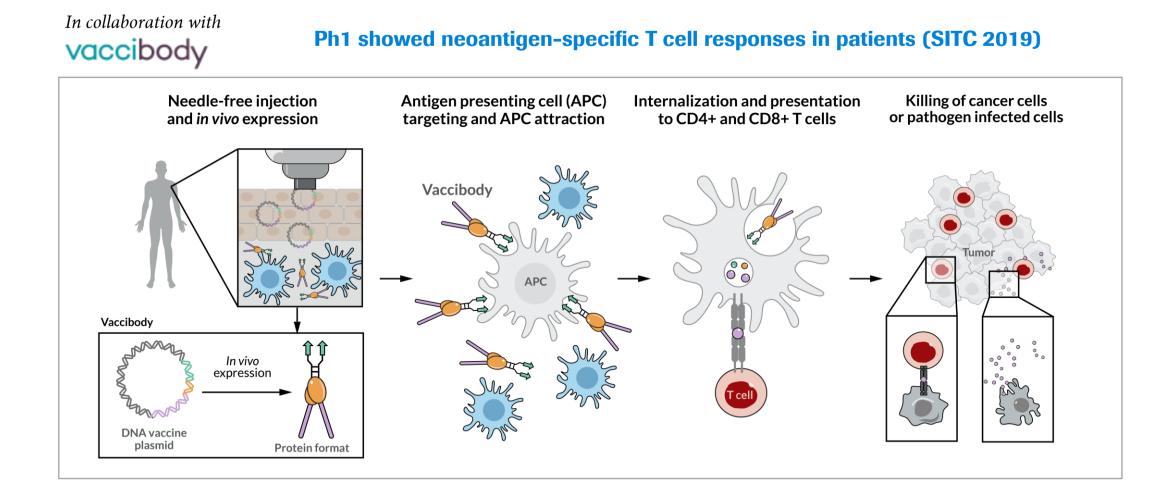
Promising activity in heavily pretreated R/R MM patients

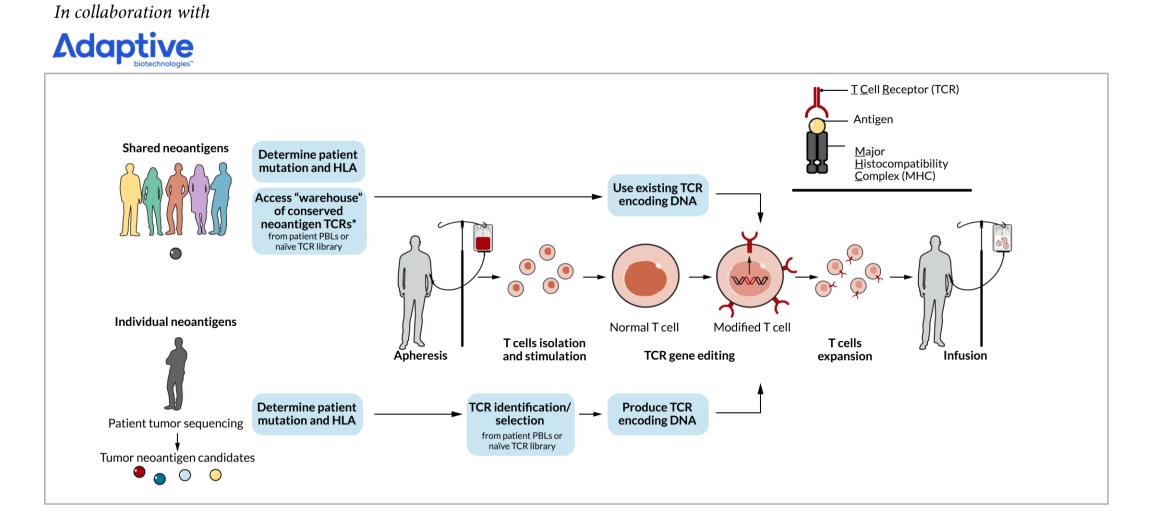
- Humanized IgG-based T-cell-engaging bispecific ab
- FcRH5 expressed exclusively in the B-cell lineage and across all maturation stages (elevated in myeloma cells and normal plasma cells vs normal B cells¹)
- Expressed on myeloma cells with near 100% prevalence


Cevostamab Ph 1 dose escalation in R/R MM

- Responses in penta-drug refractory pts (7/17, ORR:41%) and patients with prior BCMA (5/8, ORR:63%)
- Responses observed across all FcRH5 expression levels (FcRH5 expression on myeloma cells detected in all patients)
- Manageable toxicities with step-up dosing (CRS most common in C1; nearly all grade 1-2; one patient with grade 3 CRS)

Autogene cevumeran, individualized neoantigen mRNA vaccine Ph II studies underway in 1L melanoma


• Fully individualized vaccine: mRNA vectors provide patient specific therapy


- Novel algorithms predict neoantigens recognized by T cells
- On demand-production (highly iterated and reproducible with low failure rate)
- Liposomal formulation for systemic delivery IV
- Ph1 showed neoantigen-specific T cell responses in the majority of patients (AACR 2020)

DNA vaccine with distinct mechanism to activate immune response

NeoT: Personalized T cell therapy directed at neoantigens

Roch

Late-stage programs in focus

Levi Garraway, M.D., Ph.D | Chief Medical Officer and Head of Global Product Development

Significant near-term oncology news flow

Key upcoming oncology news flow

New Molecular Entity (NME) Additional Indication (AI) Oncology / Hematology

Product	Indication	Data/filing
	NSCLC adj	2021
	SCCHN adj	2022
Topontria	RCC adj	2022
Tecentriq	1L mUC	2022
	NSCLC neoadj	2022
	HCC adj	2022
Alecensa	ALK+ NSCLC adj	2022
Polivy	1L DLBCL	2021
Venclexta	r/r MM t(11:14)	2022
mosunetuzumab	3L+ FL	2021
glofitamab	3L+ DLBCL	2021
tiragolumab	1L SCLC	2022
giredestrant	destrant 2L/3L ER+/HER2- mBC	
ipatasertib	1L CRPC	2022
inavolisib	Pi3K 1L HR+ BC	2022/2023

6 potential oncology NMEs with near-term pivotal data

Innovation for patients across solid tumors and hematology

Moving earlier in disease

- Curative potential for the largest number of patients
- Increasing screening, early detection technologies

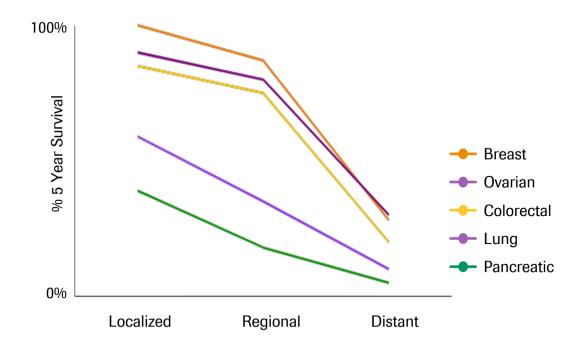
Exploring rational combinations, new indications

- Combinations: tiragolumab+Tecentriq, Polivy+mosun/glofit
- New indications: MM (cevostamab), HR+/HER2- BC (giredestrant, inavolisib)

PHC 2.0

- Innovative trial design: TAPISTRY (tumor agnostic), AlphaT (decentralized)
- Building leading insights business

Earlier disease presents the opportunity for a cure *Need for high efficacy treatments that are well tolerated*


Chance for a cure: development earlier in the course of disease is critically important to improving the cure rate

Cost to society: treatment initiated in earlier stages of cancer reduces cost vs. treatment initiated later

Unmet need: large population with continued unmet needs including opportunity to improve long-term OS

Growing population: early disease population is expected to grow with the rise of early detection technologies, increasing screening

Outcomes by cancer type and stage at diagnosis¹

Investing earlier in disease

Lung / Rare

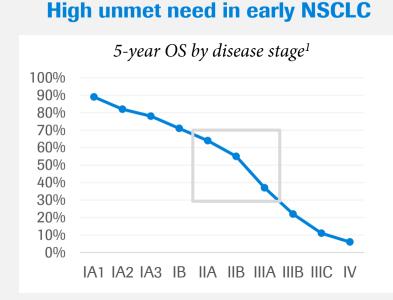
Molecule	Indication	Ph 1	Ph 2	Ph 3	
	Adjuvant NSCLC	IMpowe	er010		\checkmark
Tecentriq	Neoadjuvant NSCLC	C IMpower030			•
	Adjuvant SCCHN IMvoke010			•	
tiragolumab ¹	Stage III unres. NSCLC	SKYSCRAPER-03		3	•
uragolumab	Neoadj/Adj NSCLC	SKYSCI	RAPER-0	•	
Alecensa	Adjuvant ALK+ NSCLC	ALINA			•

Breast / Gyn

Molecule	Indication	Ph 1	Ph 2	Ph 3	
Tecentriq	Neoadj. TNBC ²	IMpass	IMpassion031		
recenting	Adj TNBC	IMpass	IMpassion030		•
airodootron	Neoadj. HR+ BC	coopER	A		
giredestrar	Adjuvant HR+ BC ⁴	lidERA	lidERA		•
giredestrar	t	-	A		•

= met primary endpoint

GI / GU


Molecule	Indication	Ph 1	Ph 2	Ph 3	
	Adjuvant RCC	IMmotion010			
	Adjuvant HCC	IMbrave050			
Topontria			ALBAN		
Tecentriq	ctDNA+ HR MIBC	IMvigor011			
	MSI-H CRC	ATOMIC			
	BCG unresp. NMIBC SWOG \$1605		S1605		
tiragolumab1	Locally adv. ESCC	SKYSC	RAPER-0)7	

Heme

Molecule	Indication	Ph 1	Ph 2	Ph 3
Polivy	1L DLBCL	POLA	RIX	
Venclexta	1L fit AML	VIALE	- <i>M</i>	
Glofit/Mosun ³	1L DLBCL	Ph 1b		

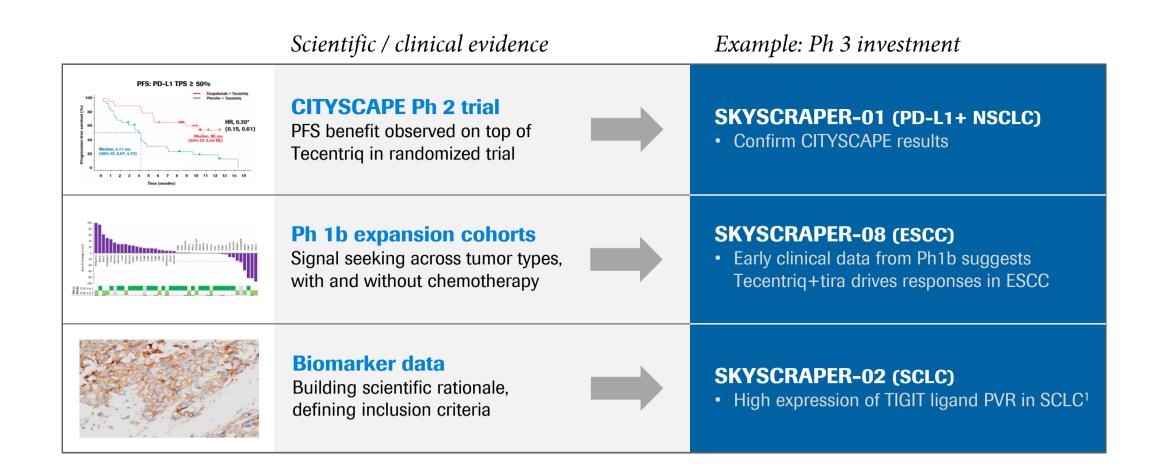
1. In combination with Tecentriq; 2. Positive for PCR, 3, +/- Polivy 4. Planned trial; NSCLC= non-small cell lung cancer; ESCC=esophageal squamous cell carcinoma; HCC=hepatocellular carcinoma; TNBC = triple negative breast cancer; RCC = renal cell carcinoma; NMIBC = non-muscle invasive bladder cancer; DLBCL = diffuse large b-cell lymphoma; AML = acute myeloid leukemia; CRC=colorectal carcinoma; ctDNA = circulating tumor DNA

High unmet need in adjuvant NSCLC *Tecentriq filed with FDA under RTOR*

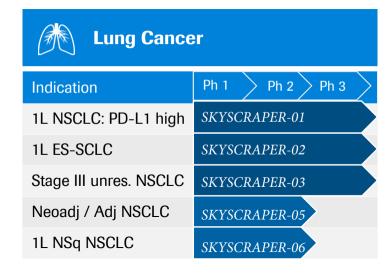
 Many patients with Stage I-III NSCLC continue to have disease recurrence/progression postsurgery

Adjuvant NSCLC treatment is still evolving

Screening: Early detection technologies expected to increase diagnosis at early stage


Testing: Increasing with adjuvant development for EGFR+, PD-L1+, ALK+ patients

Systemic therapy: Adjuvant treatment rates expected to increase with new therapeutic options


Tiragolumab (anti-TIGIT) development program: scientific and clinical rationale

Tiragolumab development program *First Ph 3 data reading out in 2022: SKYSCRAPER-02 (SCLC)*

Nine Ph II/III trials of tiragolumab + Tecentriq initiated

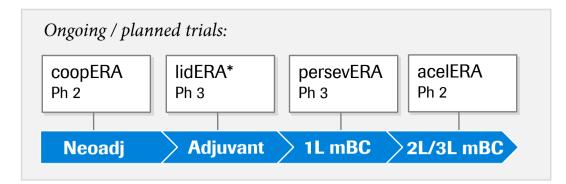
Additional trials ongoing in HCC, mUC, PDAC, TNBC, and hematology (MM, NHL)

Giredestrant (SERD) *High unmet need remains across* HR+/HER2- eBC and mBC

ET is a mainstay of HR+ BC treatment

20-50%

of HR+ eBC patients stop treatment within 5-yrs due to safety/adherence issues¹


10–30% of HR+ eBC patients become resistant to standard of care²

1. Bowels A, et al *J Oncol Pract* 2012

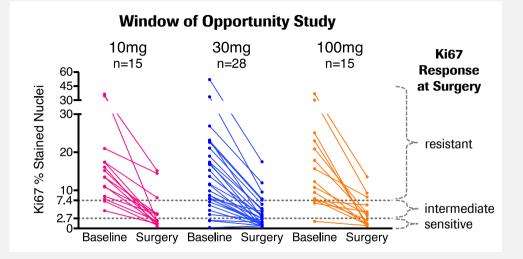
2. Ruhstaller, T. J Clin Oncol 2018

Potential for best-in-class profile in HR+ BC

- Novel MOA: immobilizes ER in the nucleus prior to degradation
- **High potency**: 7-15x more potent than other SERDs in development
- Well tolerated alone and in combination with CDK4/6i
- Standardized dose, 30mg once-daily selected for monotherapy/combo

* Planned trial; ET=endocrine therapy; HR+ BC=hormone receptor positive breast cancer; eBC=early breast cancer; mBC=metastatic breast cancer; SERD = selective estrogen receptor degraer; ER = estrogen receptor

Giredestrant (SERD) *Promising activity across* HR+/HER2- mBC and eBC

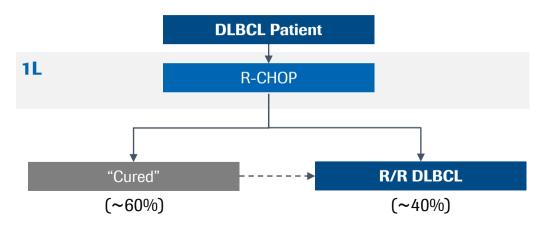

Ph TD: giredestrant monotherapy				
Clinical activity	30mg (n=41)			
ORR*	20%			
CBR	55%			
Prior fulvestrant	3/8 (38%)			
Prior CDK4/6i	11/26 (42%)			
ESR1 mut	13/17 (76%)			

HR+/HER2-mBC

Dh 1h, gived extremt menethereny

- Promising clinical activity in all patient subgroups including patients with ESR1 mutations
- · Well tolerated at all doses, with no DLTs
 - No clinically relevant bradycardia or ocular toxicity
 - Low treatment discontinuation
- Pivotal Ph 2 trial in 2L/3L HR+/HER2- BC reading out in 2022

Stage I-III neoadjuvant treatment


- Compelling pharmacodynamic effects observed in all dose cohorts (supportive of 30mg dose)
- Encouraging impact on proliferation (78% geomean reduction in Ki67); 55% of tumors exhibited complete cell cycle arrest (CCCA) at 2 weeks
- Ph 2 trial in neoadj HR+/HER2- BC reading out in 2021

*ORR in patients with baseline measurable disease; ET=endocrine therapy; HR+ BC=hormone receptor positive breast cancer; TNBC=triple negative breast cancer; eBC=early breast cancer; mBC=metastatic breast cancer; CCCA = complete cell cycle arrest, Ki67 \leq 2.7%

Polivy readout in 1L DLBCL expected in 2021 *Opportunity to establish Polivy as standard of care in curative setting*

1L DLBCL treatment can be curative...

...however high unmet need in remains in 1L DLBCL

- ~40% of patients not cured with R-CHOP in 1L
- Patients with R/R DLBCL have poor prognosis: mOS <2yrs
- No new 1L therapies approved since R-CHOP
- 3x more drug treated patients in 1L than 2L DLBCL

Roche CD20 x CD3 bispecific portfolio can be tailored to address diverse patient and customer needs

Mosunetuzumab

Attractive profile for the outpatient setting and across a broad range of indications and settings

Glofitamab

Potential to offer CAR-T like efficacy "off-theshelf", for patients with aggressive disease

- FL/DLBCL/other histologies
- 1L or R/R disease
- Patient characteristics, including risk/prognostic factors
- Single agent vs combination
- Providers
- Academic centers vs. community
- SC or IV administration
- Off-the shelf administration

Payers

BB

Fixed duration vs. continuous

Mosunetuzumab and glofitamab development plans *Moving into earlier lines of therapy in combination with SOC*

Late line monotherapy

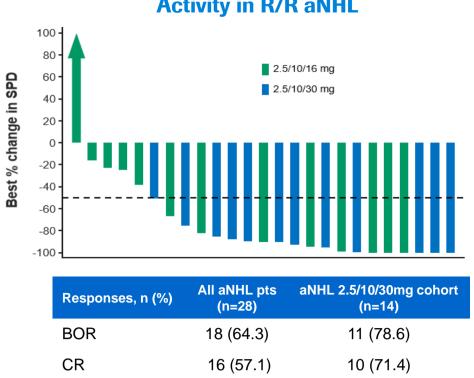
Pivotal cohorts reading out in 2021

- Mosun filing in 2021 in 3L+ FL
- Glofit filing in 2022 in 3L+ DLBCL

R/R NHL combinations

Randomized Ph 3 trials initiated

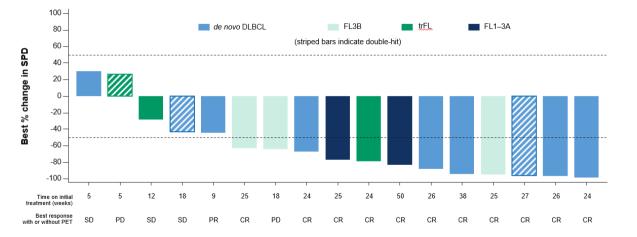
- Mosun + lenalidomide Ph 3 trial in R/R FL will begin enrolling soon
- Glofit + GemOx Ph 3 trial ongoing in 2L+ DLBCL


1L DLBCL

Developing in curative setting

- Exploring combinations with and without Polivy
- Intriguing early data for mosun in 1L elderly / unfit patients

Glofitamab Potential for best-in-class efficacy with step-up dosing


Activity in R/R aNHL

- High and durable response rates in R/R aggressive NHL patients . who have failed multiple lines of therapy
 - CR rate of 71.4% at RP2D (2.5/10/30mg) ٠
- CRS was mostly low grade, and confined to cycles 1-2 •

Mosunetuzumab + Polivy *Novel combination with promising safety and efficacy*

Phase Ib/II dose escalation

Responses, n (%)	All pts (N=22)	aNHL pts (n=19)	Post-CAR-T pts (n=7)	FL grade 1–3A pts (n=3)
BOR	15 (68.2)	12 (63.2)	4 (57.1)	3 (100)
CR	12 (54.5)	9 (47.4)	2 (28.6)	3 (100)

Median prior therapies: 3

- Promising efficacy in patients with R/R NHL, including in post-CAR-T patients
- M-Pola has an acceptable safety profile with low Gr 1 (2/22, 9%) and no Gr ≥2 CRS events observed
- Ph 2 expansion cohort in R/R DLBCL ongoing, with no mandatory hospitalization

ASCO 2021 Highlight Tecentriq in adjuvant NSCLC: Phase 3 IMpower010 primary results

Heather Wakelee, M.D | Prof. of Medicine, Stanford University Medical Center / Deputy Director Stanford Cancer Institute

IMpower010: Primary Results of a Phase 3 Global Study of Atezolizumab vs Best Supportive Care After Adjuvant Chemotherapy in Resected Stage IB-IIIA Non-Small Cell Lung Cancer (NSCLC)

Heather A. Wakelee,¹ Nasser Altorki,² Caicun Zhou,³ Tibor Csőszi,⁴ Ihor O. Vynnychenko,⁵ Oleksandr Goloborodko,⁶ Alexander Luft,⁷ Andrey Akopov,⁸ Alex Martinez-Marti,⁹ Hirotsugu Kenmotsu,¹⁰ Yuh-Min Chen,¹¹ Antonio Chella,¹² Shunichi Sugawara,¹³ Fan Wu,¹⁴ Jing Yi,¹⁵ Yu Deng,¹⁵ Mark McCleland,¹⁵ Elizabeth Bennett,¹⁵ Barbara J. Gitlitz,¹⁵ Enriqueta Felip¹⁶

2021 ASCO

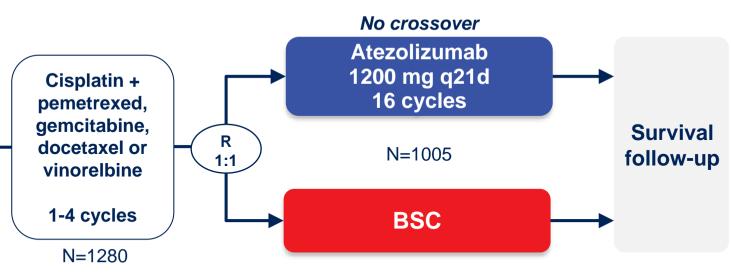
ANNUAL MEETING

¹Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA; ²New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA; ³Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China; ⁴Jasz-Nagykun-Szolnok Megyei Hetenyi Geza Korhaz-Rendelointezet, Szolnok, Hungary; ⁵Sumy State University, Regional Municipal Institution Sumy Regional Clinical Oncology Dispensary, Sumy, Ukraine; ⁶MI Zaporizhzhia Regional Clinical Oncological Dispensary Zaporizhzhia SMU Ch of Oncology, Zaporizhzhya, Ukraine; ⁷Leningrad Regional Clinical Hospital, St. Petersburg, Russia; ⁸Pavlov State Med Univ, St. Petersburg, Russia; ⁹ Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain; ¹⁰Shizuoka Cancer Center, Shizuoka, Japan; ¹¹Taipei Veterans General Hospital and National Yang Ming Chiao Tung University, Taipei, Taiwan; ¹²Azienda Ospedaliero Universitaria Pisana, Pisa, Italy; ¹³Sendai Kousei Hospital, Miyagi, Japan; ¹⁴Roche (China) Holding Ltd, Shanghai, China; ¹⁵Genentech, Inc., South San Francisco, CA, USA; ¹⁶Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain

IMpower010: introduction

- Adjuvant platinum-based chemotherapy changed the standard of care for completely resected early-stage NSCLC (stage IB-IIIA) over 15 years ago¹⁻⁴
 - DFS HR, 0.84 (95% CI: 0.78, 0.91)
 - OS HR, 0.89 (95% CI: 0.82, 0.96)
 - Leads to 4%-5% OS improvement at 5 years vs observation
- Osimertinib provides substantial DFS benefit in patients whose tumors harbor EGFR activating mutations,⁵ but there remains a high unmet need for improved adjuvant treatment in other patients with NSCLC
- IMpower010 evaluated the efficacy and safety of adjuvant atezolizumab vs best supportive care (BSC) after adjuvant chemotherapy in patients with completely resected NSCLC

Pignon J-P, et al. J Clin Oncol 2008;26:3552-9; 2. NCCN Clinical Practice Guidelines in Oncology. Non-Small Cell Lung Cancer. V8.2020; 3. Postmus PE, et al. Ann Oncol 2017;28(suppl 4):iv1-21.
Vansteenkiste J, et al. Ann Oncol 2019;30(8):1244-53; 5. Wu Y-L, et al. N Engl J Med 2020;383:1711-23.


IMpower010: study design

Completely resected stage IB-IIIA NSCLC per UICC/AJCC v7

- Stage IB tumors ≥4 cm
- ECOG 0-1
- Lobectomy/pneumonectomy
- Tumor tissue for PD-L1 analysis

Stratification factors

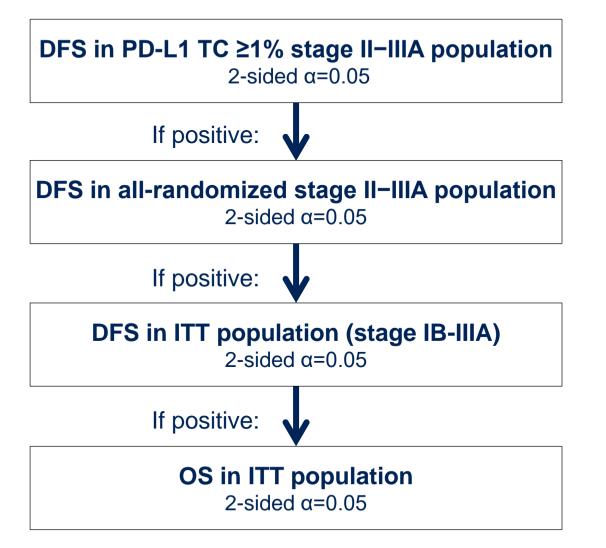
- Male/female
- Stage (IB vs II vs IIIA)
- Histology
- PD-L1 tumor expression status^a: TC2/3 and any IC vs TC0/1 and IC2/3 vs TC0/1 and IC0/1

Primary endpoints

- Investigator-assessed DFS tested hierarchically:
 - PD-L1 TC ≥1% (per SP263) stage II-IIIA population
 - All-randomized stage II-IIIA population
 - ITT population (stage IB-IIIA)

Key secondary endpoints

- OS in ITT population
- DFS in PD-L1 TC ≥50% (per SP263) stage II-IIIA population
- 3-y and 5-y DFS in all 3 populations


Both arms included observation and regular scans for disease recurrence on the same schedule. ECOG, Eastern Cooperative Oncology Group; IC, tumor-infiltrating immune cells; ITT, intent to treat; TC, tumor cells. ^a Per SP142 assay.

Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

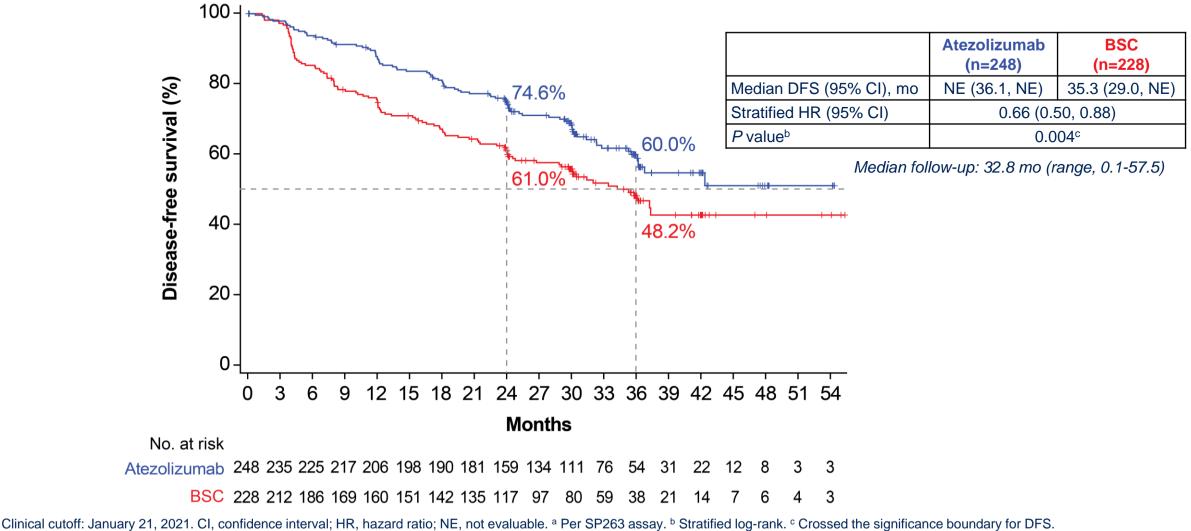
#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

IMpower010: statistical analysis plan

 The primary DFS endpoint was tested hierarchically in 3 primary analysis populations

Dr. Heather A. Wakelee Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

IMpower010: baseline characteristics


	All motion to	PD-L1 TC ≥1% (SF	P263) (stage II-IIIA)	All randomize	d (stage II-IIIA)	ITT (stage IB-IIIA)	
Characteristic	All patients (N=1005)	Atezolizumab (n=248)	BSC (n=228)	Atezolizumab (n=442)	BSC (n=440)	Atezolizumab (n=507)	BSC (n=498)
Median (range) age, y	62 (26-84)	61 (34–82)	62 (26–84)	62 (33–82)	62 (26–84)	62 (33–83)	62 (26-84)
Age ≥65 y, n (%)	382 (38.0)	92 (37.1)	97 (42.5)	161 (36.4)	177 (40.2)	184 (36.3)	198 (39.8)
Sex, male, n (%)	672 (66.9)	171 (69.0)	147 (64.5)	295 (66.7)	294 (66.8)	337 (66.5)	335 (67.3)
Race, n (%)							
White	738 (73.4)	162 (65.3)	166 (72.8)	307 (69.5)	324 (73.6)	362 (71.4)	376 (75.5)
Asian	242 (24.1)	78 (31.5)	56 (24.6)	121 (27.4)	106 (24.1)	130 (25.6)	112 (22.5)
Other	25 (2.5)	8 (3.2)	6 (2.6)	14 (3.2)	10 (2.3)	15 (3.0)	10 (2.0)
ECOG PS, n (%)							
0	556 (55.3)	140 (56.5)	125 (54.8)	239 (54.1)	252 (57.3)	273 (53.8)	283 (56.8)
1	446 (44.4)	107 (43.1)	102 (44.7)	201 (45.5)	187 (42.5)	232 (45.8)	214 (43.0)
Histology, non-squamous, n (%)	659 (65.6)	152 (61.3)	143 (62.7)	292 (66.1)	296 (67.3)	328 (64.7)	331 (66.5)
Stage, n (%)							
IB	123 (12.2)	-	-	-	-	65 (12.8)	58 (11.6)
IIA	295 (29.4)	85 (34.3)	76 (33.3)	147 (33.3)	148 (33.6)	147 (29.0)	148 (29.7)
IIB	174 (17.3)	46 (18.5)	37 (16.2)	90 (20.4)	84 (19.1)	90 (17.8)	84 (16.9)
IIIA	413 (41.1)	117 (47.2)	115 (50.4)	205 (46.4)	208 (47.3)	205 (40.4)	208 (41.8)
Tobacco use history, n (%)							
Never	222 (22.1)	51 (20.6)	41 (18.0)	100 (22.6)	96 (21.8)	114 (22.5)	108 (21.7)
Current/previous	783 (77.9)	197 (79.4)	187 (82.0)	342 (77.4)	344 (78.2)	393 (77.5)	390 (78.3)
PD-L1 by SP263, TC≥1%, n (%) ^a	535 (54.6)	248 (100)	228 (100)	248 (57.8)	228 (53.0)	283 (57.4)	252 (51.9)
EGFR mutation status, n (%) ^b							
Positive	117 (11.6)	23 (9.3)	20 (8.8)	49 (11.1)	60 (13.6)	53 (10.5)	64 (12.9)
Negative	527 (52.4)	123 (49.6)	125 (54.8)	229 (51.8)	234 (53.2)	261 (51.5)	266 (53.4)
Unknown ^c	361 (35.9)	102 (41.1)	83 (36.4)	164 (37.1)	146 (33.2)	193 (38.1)	168 (33.7)
ALK rearrangement status, n (%) ^b							
Positive	33 (3.3)	12 (4.8)	11 (4.8)	14 (3.2)	17 (3.9)	15 (3.0)	18 (3.6)
Negative	574 (57.1)	133 (53.6)	121 (53.1)	251 (56.8)	256 (58.2)	280 (55.2)	294 (59.0)
Unknown ^c	398 (39.6)	103 (41.5)	96 (42.1)	177 (40.0)	167 (38.0)	212 (41.8)	186 (37.3)

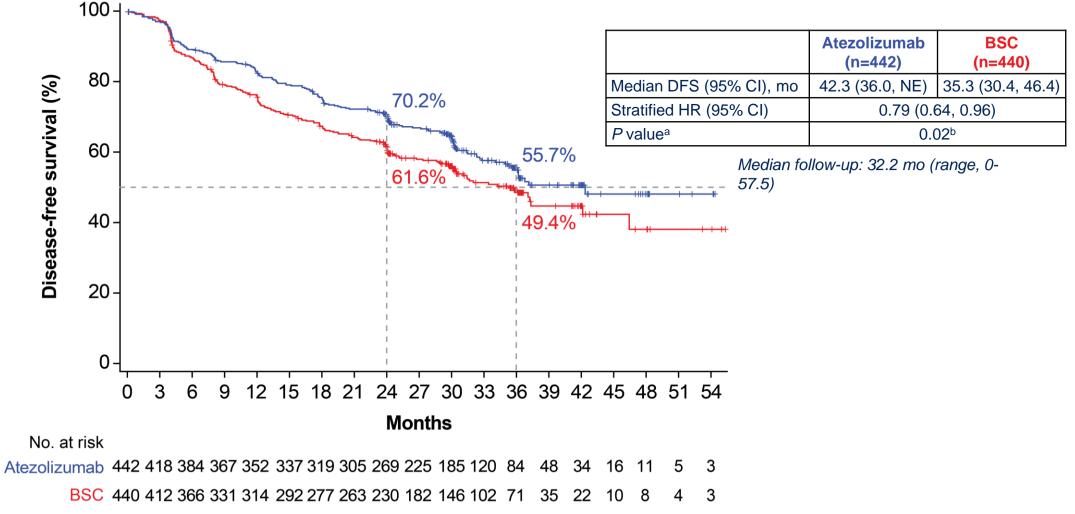
Clinical cutoff: January 21, 2021. ^a 26 patients in the ITT population had unknown PD-L1 status as assessed by SP263. ^b For patients with non-squamous NSCLC, *EGFR/ALK* status was assessed locally or centrally. ^c 89.2% of patients with unknown *EGFR* status and 80.7% of patients with unknown *ALK* status had squamous NSCLC and were not required to undergo local or central testing.

Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

IMpower010: DFS in the PD-L1 TC ≥1%^a stage II-IIIA population (primary endpoint)

IMpower010: DFS in key subgroups of the PD-L1 TC ≥1%^a stage II-IIIA population

Subgroup	N	1	HR (95% CI) ^b	<u>Subgroup</u>	N		<u>HR (95% CI)^b</u>
All patients	476		0.66 (0.49, 0.87)	All patients	476	+	0.66 (0.49, 0.87)
Age				Stage			
<65 y	287		0.67 (0.46, 0.96)	IIA	161		0.73 (0.43, 1.24)
≥65 y	189		0.64 (0.41, 1.01)	IIB	83	•	0.77 (0.35, 1.69)
Sex				IIIA	232		0.62 (0.42, 0.90)
Male	318		0.69 (0.48, 0.99)				0.02 (0.12, 0.00)
Female	158		0.61 (0.38, 0.97)	Regional lymph node			
Race				N0	106		0.88 (0.45, 1.74)
White	328	· • • · · ·	0.63 (0.45, 0.89)	N1	194		0.59 (0.36, 0.97)
Asian	134		0.63 (0.37, 1.06)	N2	176	· •	0.66 (0.44, 0.99)
ECOG PS				EGFR mutation statu	s		
0	265		0.57 (0.40, 0.83)	Yes	43		0.57 (0.26, 1.24)
1	209	· · · · · · · · · · · · · · · · · · ·	0.79 (0.51, 1.23)				
Tobacco use history				No	248		0.67 (0.45, 1.00)
Never	92	· • • • •	0.63 (0.37, 1.10)	Unknown ^e	185		0.61 (0.38, 0.98)
Previous	309		0.54 (0.37, 0.78)	ALK rearrangement s	status		
Current	75	++++	1.24 (0.58, 2.64)	Yes	23		
Histology				No	254		0.64 (0.44, 0.93)
Squamous	181	•	0.78 (0.47, 1.29)	Unknown	199		0.62 (0.39, 1.00)
Non-squamous	295		0.60 (0.42, 0.84)	CITIKITO WITE	155		0.02 (0.55, 1.00)
	0.1	1.0	10.0		0.1	1.0	10.0
		HR	,			HR	
	Atea	zolizumab better BSC bett	er		Ate	zolizumab better BSC be	etter


Clinical cutoff: January 21, 2021. ^a Per SP263 assay. ^b Stratified for all patients; unstratified for all other subgroups. ^c 89.2% and 80.7% of patients with unknown *EGFR* or *ALK* status, respectively, had squamous NSCLC and were not required to undergo local or central testing.

Dr. Heather A. Wakelee Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

IMpower010: DFS in the all-randomized stage II-IIIA population (primary endpoint)

Clinical cutoff: January 21, 2021. a Stratified log-rank. b Crossed the significance boundary for DFS.

Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

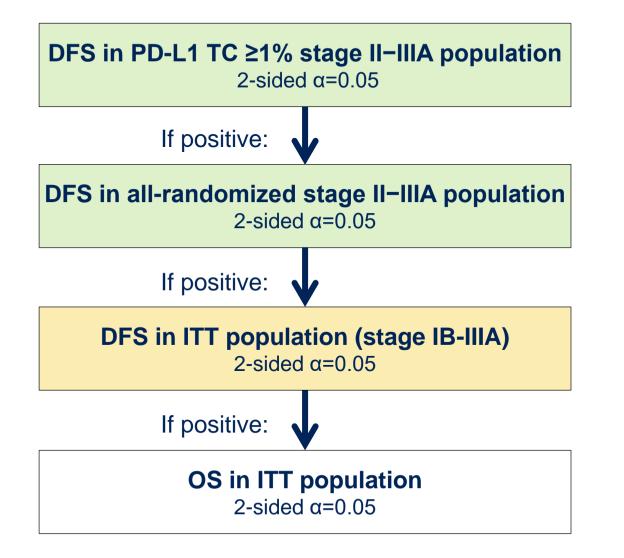
IMpower010: DFS in key subgroups of the all-randomized stage II-IIIA population

Subgroup	N		<u>HR (95% CI)ª</u>
All patients	882		0.79 (0.64, 0.96)
Age			
<65 y	544	, <u> </u>	0.79 (0.61, 1.03)
≥65 y	338	, , , , , , , , , , , , , , , , , , , 	0.76 (0.54, 1.05)
Sex			
Male	589		0.76 (0.59, 0.99)
Female	293		0.80 (0.57, 1.13)
Race			
White	631		0.78 (0.61, 1.00)
Asian	227		0.82 (0.55, 1.22)
ECOG PS			
0	491		0.72 (0.55, 0.95)
1	388		0.87 (0.64, 1.18)
Tobacco use history			
Never	196	↓	1.13 (0.77, 1.67)
Previous	547		0.62 (0.47, 0.81)
Current	139	· · · · · · · · · · · · · · · · · · ·	1.01 (0.58, 1.75)
Histology			
Squamous	294		0.80 (0.54, 1.18)
Non-squamous	588		0.78 (0.61, 0.99)
	0.1	1.0	10.0
	. 4	HR	\rightarrow
	Atezol	izumab better BSC bett	er

Subgroup	<u>N</u>		HR (95% CI) ^a
All patients	882	⊢ ∳	0.79 (0.64, 0.96)
Stage			
IIA	295	· • •	0.68 (0.46, 1.00)
IIB	174		0.88 (0.54, 1.42)
IIIA	413	· • •	0.81 (0.61, 1.06)
Regional lymph node stage (pN)			
NO	229	►•	0.88 (0.57, 1.35)
N1	348		0.67 (0.47, 0.95)
N2	305	► ●	0.83 (0.61, 1.13)
SP263 PD-L1 status			
TC≥50%	229		0.43 (0.27, 0.68)
TC≥1%	476		0.66 (0.49, 0.87)
TC<1%	383		0.97 (0.72, 1.31)
EGFR mutation status			
Yes	109	• • • • • • • • • • • • • • • • • • •	0.99 (0.60, 1.62)
No	463		0.79 (0.59, 1.05)
Unknown	310		0.70 (0.49, 1.01)
ALK rearrangement status			
Yes	31	· · · · · · · · · · · · · · · · · · ·	1.04 (0.38, 2.90)
No	507	- - - -	0.85 (0.66, 1.10)
Unknown	344	• • • • • • • • • • • • • • • • • • •	0.66 (0.46, 0.93)
	0.1	1.0	10.0
		HR	→
	Ate	zolizumab better BSC better	-

Clinical cutoff: January 21, 2021. a Stratified for all patients; unstratified for all other subgroups.

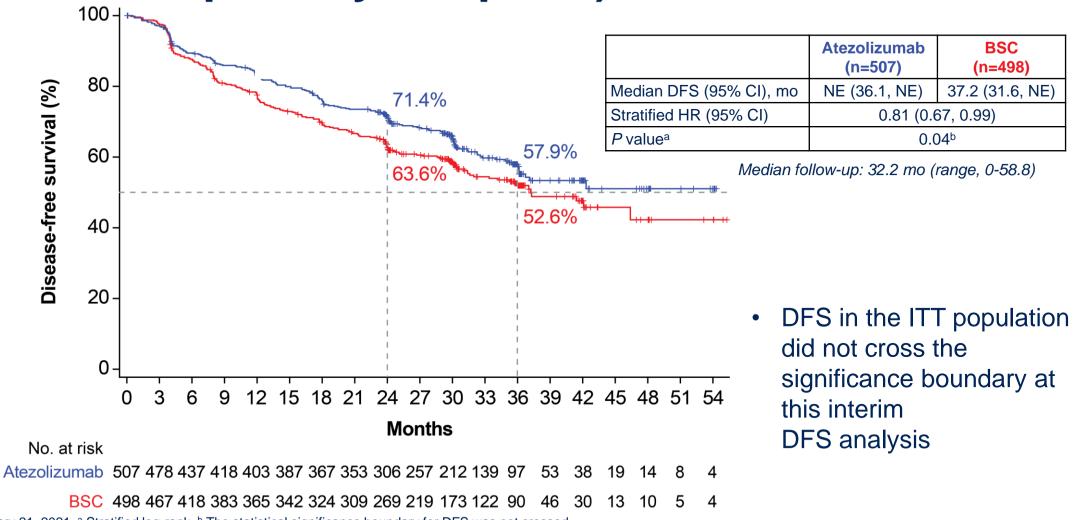
Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP


#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

2021

ANNUAL MEETING

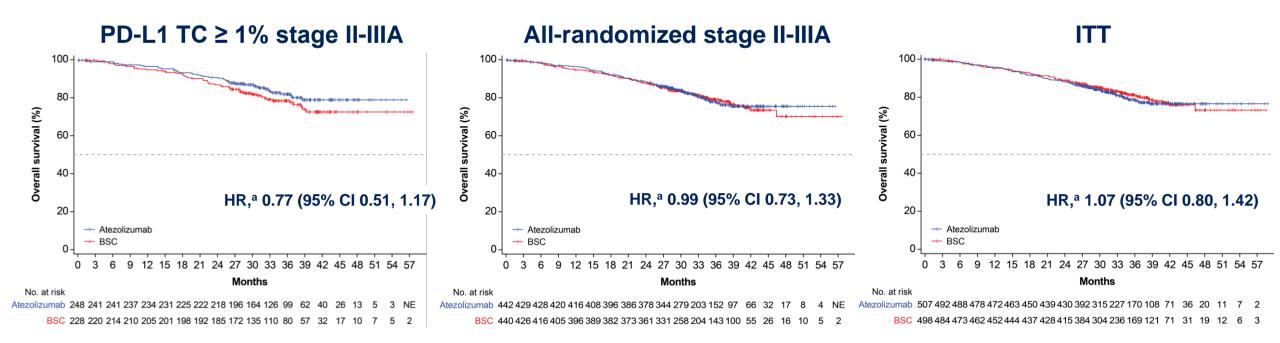
IMpower010: statistical analysis plan



 The significance boundary was not crossed at this DFS interim analysis in the ITT population (stage IB-IIIA) and testing will continue to the final DFS analysis in this population

Dr. Heather A. Wakelee Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

IMpower010: DFS in the ITT population (stage IB-IIIA; primary endpoint)



Clinical cutoff: January 21, 2021. ^a Stratified log-rank. ^b The statistical significance boundary for DFS was not crossed.

Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

IMpower010: early OS data at interim DFS analysis

- OS data were immature at this pre-planned DFS interim analysis
 - OS in the ITT population was not formally tested
 - A trend toward OS improvement with atezolizumab was seen in the PD-L1 TC ≥1% stage II-IIIA population

Clinical cutoff: January 21, 2021. ^a Stratified.

Dr. Heather A. Wakelee Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

IMpower010: safety summary^a

n (%)	Atezolizumab (n=495)	BSC (n=495)
Any-cause AE	459 (92.7)	350 (70.7)
Treatment-related AE	335 (67.7)	-
Grade 3-4 AE	108 (21.8)	57 (11.5)
Treatment-related grade 3-4 AE	53 (10.7)	-
Serious AE	87 (17.6)	42 (8.5)
Treatment-related serious AE	37 (7.5)	-
Grade 5 AE	8 (1.6) ^b	3 (0.6)°
Treatment-related grade 5 AE	4 (0.8)	-
AE leading to dose interruption of atezolizumab	142 (28.7)	-
AE leading to atezolizumab discontinuation	90 (18.2)	-
Immune-mediated AEs	256 (51.7)	47 (9.5)
Grade 3-4 immune-mediated AEs	39 (7.9)	3 (0.6)
Immune-mediated AEs requiring the use of systemic corticosteroids	60 (12.1)	4 (0.8)

Clinical cutoff: January 21, 2021. AE, adverse event; ^a Data are from the safety population (all randomized patients who received ≥1 atezolizumab dose or for BSC, had ≥1 post-baseline assessment). ^b Interstitial lung disease*; pneumothorax; multiple organ dysfunction syndrome*; cerebrovascular accident; arrhythmia; myocarditis*; acute myeloid leukemia*; acute cardiac failure. ^c Pneumonia; pulmonary embolism; cardiac tamponade and septic shock in the same patient. *, Treatment related per investigator.

Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

IMpower010: immune-mediated AEs^a

imAEs occuring in ≥1% of patients

	Atezolizumab (n=495)		BSC (n=495)	
n (%)	Any grade	Grade 3-4	Any grade	Grade 3-4
Any immune-mediated AEs	256 (51.7) ^b	39 (7.9%)	47 (9.5)	5 (0.6)
Rash	91 (18.4)	7 (1.4)	11 (2.2)	0
Hepatitis (diagnosis and laboratory abnormalities)	86 (17.4)	20 (4.0)	22 (4.4)	1 (0.2)
Hepatitis (laboratory abnormalities)	81 (16.4)	16 (3.2)	21 (4.2)	1 (0.2)
Hepatitis (diagnosis)	7 (1.4)	4 (0.8)	1 (0.2)	0
Hypothyroidism	86 (17.4)	0	3 (0.6)	0
Hyperthyroidism	32 (6.5)	2 (0.4)	4 (0.8)	0
Pneumonitis	19 (3.8) ^c	4 (0.8)	3 (0.6)	0
Infusion-related reaction	7 (1.4)	1 (0.2)	0	0
Adrenal insufficiency	6 (1.2)	2 (0.4)	0	0

Clinical cutoff: January 21, 2021. ^a Data are from the safety population (all randomized patients who received \geq 1 atezolizumab dose or for BSC, had \geq 1 post-baseline assessment). ^b Includes 2 (0.4%) Grade 5 events. ^c Includes 1 (0.2%) Grade 5 event.

imAEs occuring in <1% of patients

	Atezolizumab (n=495)		BSC (n=495)	
n (%)	Any Grade	Grade 3-4	Any grade	Grade 3-4
Meningoencephalitis	4 (0.8)	3 (0.6)	0	0
Colitis	4 (0.8)	2 (0.4)	1 (0.2)	0
Diabetes mellitus	4 (0.8)	0	1 (0.2)	0
Myositis (myositis and rhabdomyolysis)	4 (0.8)	0	1 (0.2)	0
Pancreatitis	2 (0.4)	1 (0.2)	1 (0.2)	1 (0.2)
Encephalitis	2 (0.4)	2 (0.4)	0	0
Severe cutaneous adverse reaction	2 (0.4)	0	0	0
Autoimmune hemolytic anemia	2 (0.4)	0	0	0
Myocarditis	2 (0.4) ^c	0	0	0
Meningitis	2 (0.4)	1 (0.2)	0	0
Guillain-Barre syndrome	1 (0.2)	1 (0.2)	0	0
Ocular inflammatory toxicity	1 (0.2)	0	1 (0.2)	1 (0.2)
Hypophysitis	1 (0.2)	0	0	0
Nephritis	1 (0.2)	0	0	0
Vasculitis	0	0	1 (0.2)	1 (0.2)

Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

IMpower010: conclusions

- IMpower010 is the first Phase III study of cancer immunotherapy to demonstrate DFS improvement in the adjuvant NSCLC setting after platinum-based chemotherapy
 - Adjuvant atezolizumab following complete resection and adjuvant chemotherapy showed statistically significant DFS benefit in the PD-L1 TC ≥1% stage II-IIIA (HR, 0.66; 95% CI: 0.50, 0.88) and all-randomized stage II-IIIA (HR, 0.79; 95% CI: 0.64, 0.96) populations, with enriched clinical benefit in patients whose tumors express PD-L1
- IMpower010 will continue for DFS and OS analyses in the ITT population
 - DFS in the ITT population, including patients with stage IB disease, did not cross the significance boundary at this interim DFS analysis
 - At this pre-planned interim DFS analysis, OS data were immature and not formally tested
- The safety profile of atezolizumab was consistent with prior experience of atezolizumab monotherapy across indications and lines of therapy
- Atezolizumab may be considered a practice-changing adjuvant treatment option for patients with PD-L1 TC ≥1% stage II-IIIA NSCLC

Acknowledgments

- The patients and their families
- The investigators and clinical study sites
- This study is sponsored by F. Hoffman-La Roche Ltd
- Medical writing assistance was provided by Samantha Santangelo, PhD, of Health Interactions and funded by F. Hoffman-La Roche Ltd

Australia: A. Joshi, G. Richardson Republic of Korea: H. J. An. Y.-C. Kim Belaium: P. Collard, G. Jerusalem Romania: M. Schenker Canada: R. Comeau, K. Perdrizet Russia: A. Akopov, A. Filippov, N. Karaseva, N. Kislov, N. Kovalenko, K. Laktionov, China: Y. Fan, J. Fang, J. He, Y. Hu, H. Jian, X. Li, Y. Liu, Y. Pan, M. Tao, J. Wang, Z. Yang, E. Levchenko, A.V. Luft, V. Moisevenko, K. Penkov, R. Safin, P. Skopin, A. Smolin, C. Zhou D. Stroyakovskii France: C. Becht, O. Bylicki, C. Dayen, A. Dupouy, C. Foa, C. Helissey, S. Hiret, E. Huchot, Spain: M. Amenedo Gancedo, I. C. Barneto Aranda, J. De Castro Carpeno, P. Garrido Lopez, M. Perol, X. Quantin, C. A. Valette, A. Vergnenegre V. Guillem Porta, M. Guillot Morales, A. Insa Molla, D. Isla Casado, B. Jimenez Munarriz, Germany: A. Atmaca, H. Bischoff, W. Engel-Riedel, J. R. Fischer, C. Frenzel, F. Griesinger, O. Juan Vidal, M. Lopez-Brea Pigueras, J. Luis Alonso, M. Majem Tarruella, A. Martinez-Marti, C. Grohe, S. Hammerschmidt, S. Henschke, K. Kokowski, M. Lehmann, R. Liersch, T. Moran Bueno, M. J. Oramas Rodriguez, A. L. Ortega Granados, J. Puente Vazquez, C. Meyer Zum Buschenfelde, A. Muller, A. Nusch, M. Reck, A. Rittmeyer, W. Schutte, A. Sanchez Hernandez, A. Taus Garcia, S. Vazquez Estevez H. Stauder, A. Trummer, F. Weissinger, C. Wesseler *Taiwan:* Y.-M. Chen, J.-Y. Hung, B.-C. Ji, Y.-W. Su, C.-J. Tsao, C.-T. Yang, T.-Y. Yang, C.-J. Yu Hong Kong: T. S. K. Mok Ukraine: H. Adamchuk, I. Bondarenko, O. Goloborodko, O. Kobziev, A. Kryzhanivska, D. Osinskii, V. Shamrai, D. Trukhin, G. Ursol, R. Vereshchako, I. Vynnychenko Hungary: T. Borbely, T. Csőszi, G. Losonczy, V. Sarosi Israel: J. Bar, R. Brenner, E. Dudnik, M. Gottfried, O. Merimsky, M. Wollner United Kingdom: F. Lim, D. Muthukumar, J. Thompson Italy: A. C. Bettini, R. Bordonaro, G. Borra, O. Caffo, A. Chella, L. Ciuffreda, I. Colantonio, United States: N. Altorki, M. Batus, J. Beck, N. Belman, E. Bernicker, A. Bessudo, B. Bolemon, A. Del Conte, V. Ferrari, V. Gregorc, V. Minotti, C. Natoli, S. Novello, A. Santo, G. Tonini F. Braiteh, A. Brown, G. Buchschacher, J. Cetnar, Y. Chen, M. Cohenuram, M. Coleman, Japan: M. Harada, Y. Hosomi, N. Ikeda, H. Kenmotsu, Y. H. Kim, H. Kondo, T. Kubo, K. Costas, D. Daniel, D.-Z. Drew, L. Feldman, T. Gagliano-Decesare, G. J. Gerstner, J. S. Matsumoto, W. Nishio, Y. Ohe, M. Okada, H. Saito, T. Sakagami, N. Sakakura, Goldman. S. Sugawara, T. Tagawa, K. Tajima, H. Takaya, F. Tanaka, H. Tanaka, N. Tokudome, R. Graham, S. Gurubhagavatula, J. Hamm, M. Hussein, C. Ikpeazu, H. Jhangiani, M. Johns, Y. Watanabe, M. Yamashita, T. Yoshikawa A. H. Kellum, C. Khoury, H. Khurshid, E. Kirshner, M. Knapp, M. Kozloff, D. Lowenthal, Netherlands: B. Biesma, W. Jacobs, F. Schramel H. Mamdani, N. Masood, S. L. McCune, K. Mi, W. Mitchell, J. Morris, I. Nakhoul, P. Nikolinakos, Poland: M. Bryl, A. Szczesna M. Park, I. J. Percent, K. Rao, N. Rothschild, J. Simmons, D. Slater, D. Spigel, J. Subramanian, Portugal: F. Barata, J. Oliveira, H. Queiroga, E. Teixeira J. Suga, C. Thomas, C. Vaughn, H. Wakelee, B. Weksler

Steering Committee members: N. Altorki, E. Felip, E. Vallieres, H. Wakelee, C. Zhao

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Doing now what patients need next